scholarly journals Application of a three-dimensional viscous transonic inverse method to NASA rotor 67

Author(s):  
W. T. Tiow ◽  
M Zangeneh

The development and application of a three-dimensional inverse methodology in which the blade geometry is computed on the basis of the specification of static pressure loading distribution is presented. The methodology is based on the intensive use of computational fluid dynamics (CFD) to account for three-dimensional subsonic and transonic viscous flows. In the design computation, the necessary blade changes are determined directly by the discrepancies between the target and initial values, and the calculation converges to give the final blade geometry and the corresponding steady state flow solution. The application of the method is explored using a transonic test case, NASA rotor 67. Based on observations, it is conclusive that the shock formation and its intensity in such a high-speed turbomachinery flow are well defined on the loading distributions. Pressure loading is therefore as effective a design parameter as conventional inverse design quantities such as static pressure. Hence, from an understanding of the dynamics of the flow in the fan in relation to its pressure loading distributions, simple guidelines can be developed for the inverse method in order to weaken the shock formation. A qualitative improvement in performance is achieved in the redesigned fan. The final flowfield result is confirmed by a well-established commercial CFD package.

2019 ◽  
Vol 15 (2) ◽  
pp. 246-255
Author(s):  
Tri Ratna Bajracharya ◽  
Rajendra Shrestha ◽  
Ashesh Babu Timilsina

 Pelton turbine is a high head-impulse type turbine. The high-speed jet strikes the symmetrical semi ellipsoidal buckets, thus transferring the momentum within short period of time, impulse. The conversion of potential energy of water to kinetic energy in the form of jet is done by a nozzle with internally fitted spear or needle, the assembly in known as injector. The jet quality includes but is not limited to jet velocity, velocity distribution ‘velocity profile’, core location etc. In this study, the modeling of flow in Pelton turbine injector is done by commercial Computational Fluid Dynamics (CFD) solver on a three-dimensional flow domain. The results obtained from CFD modelling are then compared against the experimental observations and previously published literatures. The jet streamline, jet velocity profile and jet core location are then studied. As observed experimentally, the mean jet diameter reduces as the nozzle opening decreases. In addition, like the experimental observations, the jet first contracts and then expands. The diameter of the contraction is then normalized with nozzle exit diameter and is plotted for both experimental observations as well as the results of the numerical simulation. The maximum error between experimental and numerical analysis of jet contraction is 20%. The jet core is located at region axially ahead of needle tip.


Author(s):  
Jan-Arun Faust ◽  
Yong Su Jung ◽  
James Baeder ◽  
André Bauknecht ◽  
Jürgen Rauleder

Recently, an asymmetric lift-offset compound helicopter has been conceptualized at the University of Maryland with the objective of improving the overall performance of a medium-lift utility helicopter. The investigated form of lift-compounding incorporates an additional stubbed wing attached to the fuselage on the retreating side. This design alleviates rotor lift requirements and generates a roll moment that enables increased thrust potential on the advancing side in high-speed forward flight. In this study, a numerical model was developed based on the corresponding experimental test case. Three-dimensional unsteady Reynolds-averaged Navier–Stokes equations were solved on overset grids with computational fluid dynamics–computational structural dynamics (CFD–CSD) coupling using the in-house CPU–GPU heterogeneous Mercury CFD framework. Simulations were performed at high-speed, high-thrust operating conditions and showed satisfactory agreement with the experimental measurements in terms of the cyclic control angles, rotor thrust, and torque values. CFD results indicated that for an advance ratio of 0.5 with a collective pitch of 10.6°, a vehicle lift-to-equivalent-drag ratio improvement of 47% was attainable using 11% wing-lift offset. The CFD-computed flow fields provide insights into the origin of a reverse flow entry vortex that was observed in particle image velocimetry data, and they characterize the wing–rotor interactional aerodynamics.


Author(s):  
F. Barbarossa ◽  
M. E. Rife ◽  
M. Carnevale ◽  
A. B. Parry ◽  
J. S. Green ◽  
...  

The propulsive efficiency of civil aviation power plants can be effectively improved by increasing the bypass ratio. Higher bypass ratios, however, exacerbate issues of performance, stability and integrity due to the interaction between the engine pylon, the outlet guide vanes (OGV) and the fan. These issues are due to the distortion of the static pressure field at fan exit due to the presence of the pylon and its transmission through the OGV bladerow and are more pronounced the closer the components of the low pressure compression (LPC) system are. These issues make a rational and effective design of the LPC system of paramount importance for the success of very high-bypass ratio engines. At the preliminary design phase, methods that utilise computational fluid dynamics (CFD) are prohibitively expensive, particularly if they are used as part of optimisation processes involving highly three dimensional, non-axisymmetric OGV designs. An alternative method is being developed exploiting the simplicity and the accuracy of surface singularity element methods to investigate the sensitivity of the bypass system to changes in the design variables. Although the singularity method is based on simplified assumptions of inviscid, incompressible flow, it still performs remarkably well when combined with a tailored optimisation technique. This paper discusses the optimisation framework in detail, including the underlying mathematical models that describe the three-dimensional aerodynamic flowfield as well as the optimisation tools, variables and cost functions used within the optimisation process. The results show that the proposed approach can be used to explore quickly and efficiently a far wider design space than attempted so far in literature. Furthermore, the proposed method leads to non-axysymmetric cascade designs whereby every vane has the same load as the nominal vane whilst greatly reducing the static pressure distortion at fan exit.


Author(s):  
A. J. Sanders

This paper describes the identification and prediction of a new class of non-synchronous vibration (NSV) problem encountered during the development of an advanced composite fan stator for an aircraft engine application. Variable exhaust nozzle testing on an instrumented engine is used to map out the NSV boundary, with both choke- and stall-side instability zones present that converge toward the nominal fan operating line and place a limit on the high-speed operating range. Time-accurate three-dimensional viscous CFD analyses are used to demonstrate the NSV instability is being driven by dynamic stalling of the fan stator due to unsteady shock-boundary layer interaction. The effects of downstream struts in the front frame of the engine are found to exasperate the problem, with the two fat service struts in the bypass duct generating significant spatial variations in the stator flow field. Strain gage measurements indicate that the stator vanes experiencing the highest vibratory strains correspond to the low static pressure regions of the fan stator assembly located approximately 90 degrees away from the two fat struts. The CFD analyses confirm the low static pressure sectors of the stator assembly are the passages in which the flow-induced NSV instability is initiated due to localized choking phenomena. The CFD predictions of the instability frequency are in reasonable agreement with the strain gage data, with the strain gage data indicating that the NSV response occurs at a frequency approximately 25% below the frequency of the fundamental bending mode. The flow patterns predicted by the CFD analyses are also correlated with the results of an engine flow visualization test to demonstrate the complex nature of the fan stator flow field.


2011 ◽  
Vol 99-100 ◽  
pp. 1287-1292
Author(s):  
Wei An Meng ◽  
Mutellip Ahmat ◽  
Nijat Yusup ◽  
Asiye Shavkat

Based on the computational fluid dynamics (CFD) theory and numerical simulation methods, the seal cavity flow field for the bellows mechanical seal under such the high temperature, high pressure, high-speed as complex working conditions was numerically simulated, and the temperature field, velocity field, pressure field, turbulent kinetic energy and the flow field vorticity distribution of the medium of the seal cavity were obtained, the three-dimensional fluid flow in the seal cavity, the heat transfer characteristics and the impact on the sealing performance were analyzed in this researching.


2018 ◽  
Vol 140 (3) ◽  
Author(s):  
Davide Astolfi ◽  
Francesco Castellani ◽  
Ludovico Terzi

This work deals with wind turbine wakes in complex terrain. The test case is a cluster of four 2.3 MW wind turbines, sited in a very complex terrain. Their performances are studied through supervisory control and data acquisition (SCADA) data, suggesting a relevant role of the terrain in distorting the wake of the upstream turbines. The experimental evidences stimulate a deeper comprehension through numerical modeling: computational fluid dynamics (CFD) simulations are run, using the Reynolds-averaged Navier–Stokes (RANS) formulation. A novel way of elaborating the output of the simulations is proposed, providing metrics for quantifying the three-dimensional (3D) evolution of the wake. The main outcome of the numerical analysis is that the terrain distorts the wind flow so that the wake profile is severely asymmetric with respect to the lateral displacement. Further, the role of orography singularities is highlighted in dividing the wake front, thus inducing faster wake recovery with respect to flat terrain. This interpretation is confirmed by SCADA data analysis.


2007 ◽  
Vol 129 (9) ◽  
pp. 1193-1202 ◽  
Author(s):  
Diego A. Arias ◽  
Timothy A. Shedd

A commercial computational fluid dynamics (CFD) package was used to develop a three-dimensional, fully turbulent model of the compressible flow across a complex-geometry venturi, such as those typically found in small engine carburetors. The results of the CFD simulations were used to understand the effect of the different obstacles in the flow on the overall discharge coefficient and the static pressure at the tip of the fuel tube. It was found that the obstacles located at the converging nozzle of the venturi do not cause significant pressure losses, while those obstacles that create wakes in the flow, such as the fuel tube and throttle plate, are responsible for most of the pressure losses. This result indicated that an overall discharge coefficient can be used to correct the mass flow rate, while a localized correction factor can be determined from three-dimensional CFD simulations in order to estimate the static pressure at locations of interest within complex venturis.


2005 ◽  
Vol 129 (1) ◽  
pp. 108-118 ◽  
Author(s):  
M. P. C. van Rooij ◽  
T. Q. Dang ◽  
L. M. Larosiliere

Current turbomachinery design systems increasingly rely on multistage CFD as a means to diagnose designs and assess performance potential. However, design weaknesses attributed to improper stage matching are addressed using often ineffective strategies involving a costly iterative loop between blading modification, revision of design intent, and further evaluation of aerodynamic performance. A scheme is proposed herein which greatly simplifies the design point blade row matching process. It is based on a three-dimensional viscous inverse method that has been extended to allow blading analysis and design in a multi-blade row environment. For computational expediency, blade row coupling is achieved through an averaging-plane approximation. To limit computational time, the inverse method was parallelized. The proposed method allows improvement of design point blade row matching by direct regulation of the circulation capacity of the blading within a multistage environment. During the design calculation, blade shapes are adjusted to account for inflow and outflow conditions while producing a prescribed pressure loading. Thus, it is computationally ensured that the intended pressure-loading distribution is consistent with the derived blading geometry operating in a multiblade row environment that accounts for certain blade row interactions. The viability of the method is demonstrated in design exercises involving the rotors of a 2.5 stage, highly loaded compressor. Individually redesigned rotors display mismatching when run in the 2.5 stage, evident as a deviation from design intent. However, simultaneous redesign of the rotors in their multistage environment produces the design intent, indicating that aerodynamic matching has been achieved.


2011 ◽  
Vol 130-134 ◽  
pp. 2345-2348
Author(s):  
Xiao Xing ◽  
Guo Ming Ye

To investigate the effect of air flow in an pneumatic splicer on splicing performance, a computational fluid dynamics (CFD) model has been developed to simulate the air flow characteristics in an splicing chamber. Three-dimensional numerical simulation is conducted and standard K-ε turbulence model is used. Velocity distributions in the chamber are presented and analyzed. The computational results show that the velocities in the chamber are transonic. The air flows in the chamber are two swirling flows with opposite directions. This work also shows that CFD technique can provide a better understanding of the behavior of the high speed air flow in the air splicing chamber.


Sign in / Sign up

Export Citation Format

Share Document