Vortex ring-like structures in gasoline fuel sprays under cold-start conditions

2009 ◽  
Vol 10 (4) ◽  
pp. 195-214 ◽  
Author(s):  
S Begg ◽  
F Kaplanski ◽  
S Sazhin ◽  
M Hindle ◽  
M Heikal

A phenomenological study of vortex ring-like structures in gasoline fuel sprays is presented for two types of production fuel injectors: a low-pressure, port fuel injector (PFI) and a high-pressure atomizer that injects fuel directly into an engine combustion chamber (G-DI). High-speed photography and phase Doppler anemometry (PDA) were used to study the fuel sprays. In general, each spray was seen to comprise three distinct periods: an initial, unsteady phase; a quasi-steady injection phase; and an exponential trailing phase. For both injectors, vortex ring-like structures could be clearly traced in the tail of the sprays. The location of the region of maximal vorticity of the droplet and gas mixture was used to calculate the temporal evolution of the radial and axial components of the translational velocity of the vortex ring-like structures. The radial components of this velocity remained close to zero in both cases. The experimental results were used to evaluate the robustness of previously developed models of laminar and turbulent vortex rings. The normalized time, , and normalized axial velocity, , were introduced, where tinit is the time of initial observation of vortex ring-like structures. The time dependence of on was approximated as and for the PFI and G-DI sprays respectively. The G-DI spray compared favourably with the analytical vortex ring model, predicting , in the limit of long times, where α = 3/2 in the laminar case and α = 3/4 when the effects of turbulence are taken into account. The results for the PFI spray do not seem to be compatible with the predictions of the available theoretical models.

Author(s):  
T. Conrad ◽  
A. Bibik ◽  
D. Shcherbik ◽  
E. Lubarsky ◽  
B. T. Zinn

This paper describes an experimental investigation of suppressing combustion instabilities in a liquid fueled (n-heptane) atmospheric combustor incorporating an array of “smart” fuel injectors. These injectors were designed so that their spray properties could be manipulated without changing the overall operating conditions (power, mass flow rates, equivalence ratio, etc.) of the combustor. The dependence of these spray properties upon the smart injector settings was determined for a single injector using a series of cold flow experiments, including spray images and PDPA measurements of spray velocities and droplet sizes. The stability characteristics of a combustor incorporating seven such injectors were then determined and correlations were drawn between these characteristics, the single injector spray properties, and combustion behavior measurements taken for a single injector. It was shown that both longitudinal and tangential instability modes were excited in this combustor; the mechanisms of excitation and damping of these modes were then further investigated using high speed photography and spectroscopy measurements. Finally, suppression of both modes of instabilities in this combustor were demonstrated by slow tuning of the injector spray properties.


2011 ◽  
Vol 133 (10) ◽  
Author(s):  
A. Valera-Medina ◽  
N. Syred ◽  
P. Bowen ◽  
A. Crayford

Swirl stabilized combustion is a technology which, for stationary combustion, consumes more than 70 to 80% of the world’s fossil fuels. There have been many reviews of this technology, but there are still many gaps in understanding. This paper focuses on the general characteristics of a 100kW swirl burner, originally designed for poor quality fuels, in terms of flame characteristic, length and pressure fluctuations, to give a relative measure of the propensity of the system to respond to outside perturbations. Studied effects include swirl number, symmetry of the swirl flow system, type of fuel injector and mode of fuel injection. A range of techniques, including High Speed Photography (HSP), Particle Image Velocimetry (PIV) and fluctuating pressure measurements were used to create flame maps, flame length detail, and relative pressure amplitudes graphs. The results are discussed in the context of potential oscillations and coupling mechanisms including the effect of the precessing vortex core (PVC), recirculation and shear flow instabilities.


2019 ◽  
Vol 22 (1) ◽  
pp. 243-256 ◽  
Author(s):  
Rubby Prasetya ◽  
Akira Sou ◽  
Junichi Oki ◽  
Akira Nakashima ◽  
Keiya Nishida ◽  
...  

Two kinds of cavitation may occur in mini-sac type diesel injectors. The first is geometrical cavitation, which can usually be seen as a film-like structure in the nozzle. The second is the filament-like string cavitation. Both types of cavitation are known to affect fuel spray characteristics, although the effects of geometrical cavitation and that of string cavitation have not been individually clarified. Moreover, the mechanism behind string cavitation occurrence is still unclear. String cavitation usually occurs at low needle lift, which might indicate the existence of a vortex ring flow in the sac. However, because of the difficulty in precise flow measurement of the three-dimensional flow structure in the sac, the link between vortex ring flow and string cavitation occurrence in the sac has not been proven. In this study, high-speed imaging of string cavitation, geometrical cavitation, and discharged liquid jet of an enlarged three-hole mini-sac diesel fuel injector was conducted to individually clarify the effects of string cavitation and geometrical cavitation on the discharged liquid jet angle. Furthermore, tomographic–stereo particle image velocimetry was carried out on the sac. The experiments were conducted at two different needle lifts, to clarify the link between needle lifts and flow structure in the sac, as well as how it affects string cavitation occurrence and liquid jet angle. The results confirmed that at low needle lift, vortex ring flow forms in the sac, which may induce helical flow in the nozzle, resulting in a large jet angle. Vortex strength varies with time, and string cavitation occurs when the vortex is particularly strong. As a result, the magnitude of the jet angle increase at low needle lift is enhanced when string cavitation occurs. At high needle lift, flow pattern in the sac becomes relatively uniform, which makes it harder for string cavitation to form.


Author(s):  
Eileen M. Mirynowski ◽  
Ajay K. Agrawal ◽  
Joshua A. Bittle

More precise measurements of the fuel injection process can enable better combustion control and more accurate predictions resulting in a reduction of fuel consumption and toxic emissions. Many of the current methods researchers are using to investigate the transient liquid fuel sprays are limited by cross sensitivity when studying regions with both liquid and vapor phases present (i.e. upstream of the liquid length). The quantitative rainbow schlieren technique has been demonstrated in the past for gaseous fuel jets and is being developed here to enable study of the spray near the injector. In this work an optically accessible constant pressure flow rig and a modern common rail diesel injector are used to obtain high speed images of vaporizing fuel sprays at elevated ambient temperatures and pressures. Quantitative results of full-field equivalence ratio measurements are presented as well as more traditional measurements such as vapor penetration and angle for a single condition (13 bar, 180°C normal air) using nheptane injected through a single hole (0.1mm diameter) common rail fuel injector at 1000 bar fuel injection pressure. This work serves as a proof of concept for the rainbow schlieren technique being applied to vaporizing fuel sprays and full details of the image processing routine are provided. The ability of the imaging technique combined with the constant pressure flow rig make this approach ideal for generating large data sets in short periods of time for a wide range of operating conditions.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
Eileen M. Mirynowski ◽  
Ajay K. Agrawal ◽  
Joshua A. Bittle

More precise measurements of the fuel injection process can enable better combustion control and more accurate predictions resulting in a reduction of fuel consumption and toxic emissions. Many of the current methods researchers are using to investigate the transient liquid fuel sprays are limited by cross-sensitivity when studying regions with both liquid and vapor phases present (i.e., upstream of the liquid length). The quantitative rainbow schlieren technique has been demonstrated in the past for gaseous fuel jets and is being developed here to enable study of the spray near the injector. In this work, an optically accessible constant pressure flow rig (CPFR) and a modern common rail diesel injector are used to obtain high-speed images of vaporizing fuel sprays at elevated ambient temperatures and pressures. Quantitative results of full-field equivalence ratio measurements are presented as well as more traditional measurements such as vapor penetration and angle for a single condition (13 bar, 180 °C normal air) using n-heptane injected through a single hole (0.1 mm diameter) common rail fuel injector at 1000 bar fuel injection pressure. This work serves as a proof of concept for the rainbow schlieren technique being applied to vaporizing fuel sprays, and full details of the image-processing routine are provided. The ability of the imaging technique combined with the constant pressure flow rig make this approach ideal for generating large data sets in short periods of time for a wide range of operating conditions.


Author(s):  
Yakang Xia ◽  
Lyes Khezzar ◽  
Mohamed Alshehhi

Flow visualization using high speed photography is used to study the structure of two liquid and one air impinging turbulent jets. The break up structure is discussed and the resulting spray angle at large air flow rates is obtained. The spray angle increases with the air flow rate except for the case when the water jet velocity is so small that the flow rate of air does not have significant effects on the spray angle. Phase Doppler Anemometry measurements of liquid droplet sizes and velocities are also given in terms of radial profiles at several axial locations from the point of impingement.


Author(s):  
Eiji Ishii ◽  
Kazuki Yoshimura ◽  
Yoshihito Yasukawa ◽  
Hideharu Ehara

Lower engine emissions like CO2, particulate matter (PM), and NOx have recently become more necessary in automobile engines to protect the earth's environment. Keeping uniformity of air/fuel mixture and decreasing fuel adhesion on walls of cylinder and piston are effective in order to reduce the engine emissions. In order to achieve the target fuel-spray, fuel injectors for gasoline direct injection engines need to be designed to deal with multiple injections with high speed of opening and closing of valves. One of the difficulties in the multiple injections is to control fuel-spray behaviors during opening and closing of valve; flow rate and spray penetration which are changed due to slow velocity of fluid during opening and closing of valve cause nonuniformity of air/fuel mixture that results in the increase of PM. Fuel-spray behaviors are controlled by the valve-lifts of fuel injectors; therefore, air/fuel mixture simulations that integrate with inner flow simulations in fuel injectors during the opening and closing of valves are essential for studying the effects of valve motions on air/fuel mixtures. In this study, we developed an air/fuel mixture simulation that is connected with an inner-flow simulation with a valve opening and closing function. The simulation results were validated by comparing the simulated fuel breakup near the nozzle outlets and the air/fuel mixtures in the air region with the measured ones, revealing good agreement between them. The effects of opening and closing the valve on the air/fuel mixtures were also studied; the opening and closing of the valve affected the front and rear behaviors of the air/fuel mixture and also affected spray penetrations. The developed simulation was found to be an effective tool for studying the effects of valve motions on the air/fuel mixtures. It was also found that the magnetic circuit with the solenoid needs to be designed to achieve high-speed valve motion and also keeps same valve motion in each injection, especially during opening and closing of valve.


2020 ◽  
Vol 13 (3) ◽  
pp. 115-129
Author(s):  
Shin’ichi Aratani

High speed photography using the Cranz-Schardin camera was performed to study the crack divergence and divergence angle in thermally tempered glass. A tempered 3.5 mm thick glass plate was used as a specimen. It was shown that two types of bifurcation and branching existed as the crack divergence. The divergence angle was smaller than the value calculated from the principle of optimal design and showed an acute angle.


2016 ◽  
Vol 11 (1) ◽  
pp. 30-37 ◽  
Author(s):  
A.A. Rakhimov ◽  
A.T. Akhmetov

The paper presents results of hydrodynamic and rheological studies of the inverse water hydrocarbon emulsions. The success of the application of invert emulsions in the petroleum industry due, along with the high viscosity of the emulsion, greatly exceeding the viscosity of the carrier phase, the dynamic blocking effect, which consists in the fact that the rate of flow of emulsions in capillary structures and cracks falls with time to 3-4 orders, despite the permanent pressure drop. The reported study shows an increase in viscosity with increasing concentration or dispersion of emulsion. The increase in dispersion of w/o emulsion leads to an acceleration of the onset of dynamic blocking. The use of microfluidic devices, is made by soft photolithography, along with high-speed photography (10,000 frames/s), allowed us to see in the blocking condition the deformation of the microdroplets of water in inverse emulsion prepared from simple chemical compounds.


Sign in / Sign up

Export Citation Format

Share Document