Paper 4: Gas-Turbine Cycles and Associated Problems

Author(s):  
R. H. Burdett ◽  
D. W. Thomas

The practical value of cycle efficiency is influenced by the extent of the capital investment necessary to achieve that efficiency and also by the quality, and hence the cost, of the fuel necessary for the successful attainment of the operating parameters necessary to the given efficiency level. This paper shows how such considerations have led to proposals for combined gas/steam cycles. The gas turbine in electricity supply has been severely limited in its extent of application because of the considerable problems and implied limitations of cheap fuels. In the future the coolant of gas-cooled nuclear reactors could offer greatly widened scope for the application of gas turbine technology. This paper explores the prospects in the context of the developments which may be expected in advanced gas-cooled reactor technology as it is evolving in Great Britain.

2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Dacheng Shang ◽  
Peng Pei ◽  
Yujun Zuo

Abstract It is anticipated that utilizing the underground space in abandoned mines to build and operate pumped-storage hydroelectricity (PSH) plants can reduce capital investment and geological constraints. However, there are currently few detailed investigations into techno-economic feasibility except for conceptual studies. In this paper, an underground coal mine in Guizhou, China was used as a reference, and the PSH layout was designed; in addition, the head loss, plant efficiency, and major cost components were investigated. The calculation results show that the capital investment of mine-based PSH was 33–50% less than that of conventional PSH. Sensitivity analysis found a clear influence of coal seam inclination on the performance of the mine-based PSH. Under the assumed conditions, the plant cycle efficiency increased from 62.7% to 71.5% when the coal seam dip varied from 5 deg to 25 deg. Depending on different price scenarios, when the coal seam inclination was steep enough, the cost of energy storage of a mine-based PSH plant was competitive compared with conventional PSH, and the plant could even become profitable. The influence of the dip of coal seam was more pronounced when in the lower range (5–15 deg) than the higher range (15–25 deg).


2011 ◽  
Vol 15 (1) ◽  
pp. 43-54 ◽  
Author(s):  
Mofid Gorji-Bandpy ◽  
Hamed Goodarzian

Exergoeconomic analysis helps designers to find ways to improve the performance of a system in a cost effective way. This can play a vital role in the analysis, design and optimization of thermal systems. Thermoeconomic optimization is a powerful and effective tool in finding the best solutions between the two competing objectives, minimizing economic costs and maximizing exergetic efficiency. In this paper, operating parameters of a gas turbine power plant that produce 140MW of electricity were optimized using exergoeconomic principles and genetic algorithms. The analysis shows that the cost of final product is 9.78% lower with respect to the base case. This is achieved with 8.77% increase in total capital investment. Also thermoeconomic analysis and evaluation were performed for the gas turbine power plant. The results show the deep relation of the unit cost on the change of the operating parameters.


2018 ◽  
Vol 1 (3) ◽  
pp. 27 ◽  
Author(s):  
Christos Kalathakis ◽  
Nikolaos Aretakis ◽  
Konstantinos Mathioudakis

The performance of solar hybrid Brayton cycle materialized by a micro-gas turbine based on a turbocharger is studied. The use of a turbocharger is aimed at investment cost reduction and construction simplification. Two configurations are investigated, namely hybrid and solar-only. Design aspects are discussed, in view of the requirement for minimizing the cost of electricity produced. A key parameter is the turbine inlet temperature and its effect on performance is investigated. The effect of heliostat field size is also investigated. Augmentation of the maximum temperature leads to better performance, as a result of higher cycle efficiency. Solar-only configuration features are compared with hybrid ones and the contribution of different cost components to the final electricity cost is discussed.


2020 ◽  
pp. 99-111
Author(s):  
Vontas Alfenny Nahan ◽  
Audrius Bagdanavicius ◽  
Andrew McMullan

In this study a new multi-generation system which generates power (electricity), thermal energy (heating and cooling) and ash for agricultural needs has been developed and analysed. The system consists of a Biomass Integrated Gasification Combined Cycle (BIGCC) and an absorption chiller system. The system generates about 3.4 MW electricity, 4.9 MW of heat, 88 kW of cooling and 90 kg/h of ash. The multi-generation system has been modelled using Cycle Tempo and EES. Energy, exergy and exergoeconomic analysis of this system had been conducted and exergy costs have been calculated. The exergoeconomic study shows that gasifier, combustor, and Heat Recovery Steam Generator are the main components where the total cost rates are the highest. Exergoeconomic variables such as relative cost difference (r) and exergoeconomic factor (f) have also been calculated. Exergoeconomic factor of evaporator, combustor and condenser are 1.3%, 0.7% and 0.9%, respectively, which is considered very low, indicates that the capital cost rates are much lower than the exergy destruction cost rates. It implies that the improvement of these components could be achieved by increasing the capital investment. The exergy cost of electricity produced in the gas turbine and steam turbine is 0.1050 £/kWh and 0.1627 £/kWh, respectively. The cost of ash is 0.0031 £/kg. In some Asian countries, such as Indonesia, ash could be used as fertilizer for agriculture. Heat exergy cost is 0.0619 £/kWh for gasifier and 0.3972 £/kWh for condenser in the BIGCC system. In the AC system, the exergy cost of the heat in the condenser and absorber is about 0.2956 £/kWh and 0.5636 £/kWh, respectively. The exergy cost of cooling in the AC system is 0.4706 £/kWh. This study shows that exergoeconomic analysis is powerful tool for assessing the costs of products.


2017 ◽  
Author(s):  
Andrew Detor ◽  
◽  
Richard DiDomizio ◽  
Don McAllister ◽  
Erica Sampson ◽  
...  

Author(s):  
Roger Hitchin

Policies to reduce carbon emissions are leading to substantial changes in the demand for electricity and to the structure of electricity supply systems, which will alter the cost structure of electricity supply. This can be expected to result in corresponding changes to the price structure faced by customers. This note is an initial exploration of how possible new price structures may impact on HVAC system and building design and use. Changes in the price structure of electricity supply (separately from changes in price levels) can significantly affect the cost-effective design and operation of building services systems; especially of heating and cooling systems. The nature and implications of these changes can have important implications for future system design and operation.


Author(s):  
R. H. W. Brook

When a serious failure situation has developed, an expensive crash programme is usually required. If in-service data are analysed as a routine, then impending trouble may be foreseen and management decisions made to minimize the cost. A reliability analysis can help to establish a failure pattern compatible with intuitive engineering assessment so that, from a realistic prediction, alternative courses of action can be considered. A recent gas-turbine engine problem which has caused six component failures is analysed, and alternative replacement strategies are considered. It is suggested that to adopt the intuitive compromise strategy could be the most expensive in this case.


1962 ◽  
Vol 66 (620) ◽  
pp. 528-530 ◽  
Author(s):  
H. Pearson

It is well known that the main purpose of the by-pass principle is to improve the propulsive efficiency of a simple jet engine by removing some of the energy left in the jet gases and using this to compress an extra quantity of air, known as the by-pass air, this air being ejected rearwards with the jet gases. In this way a greater mass of air is ejected rearwards at a lower jet velocity and thus a better propulsive efficiency is obtained. This is an extremely simplified view of the advantages of the by-pass engine, however, since an equivalent result of obtaining a lower jet velocity can be obtained by designing the jet engine for a lower combustion temperature. The by-pass principle is of advantage because it enables a higher propulsive efficiency to be obtained at the same time as employing a high combustion temperature and therefore a high basic cycle efficiency. If the component efficiencies of a gas turbine were 100 per cent, cycle efficiency would not depend upon combustion temperature at all, and there would thus be no advantage in principle in using the by-pass engine. In practice there would probably be some residual advantage left in that for a given thrust a lower engine weight could be obtained.


Sign in / Sign up

Export Citation Format

Share Document