The Role of Oleophilic Surface in Lubrication

Author(s):  
A. J. Groszek

Surfaces of MoS2 and graphite are composed of ‘oleophilic’ regions, which have a strong affinity for long-chain normal hydrocarbons, and polar regions. The oleophilic regions adsorb hydrocarbons in preference to polar compounds, such as water and alcohols. Conversely, water and alcohols easily displace hydrocarbons adsorbed in the polar sites. A study of MoS2 and graphite having different proportions of oleophilic and polar sites shows that the lubricating effectiveness of these solids increases with the proportion of oleophilic sites on their surfaces. For MoS2 the sites consist of regularly disposed sulphur atoms in the basal planes of individual crystallites, and it is postulated that they can become chemically bonded to steel surfaces. When one basal plane side of a MoS2 crystallite is bonded to the steel surface, the other side presents an oleophilic surface to the surroundings, which has a low surface energy and high affinity for mineral oils. The oleophilic ‘sites’ produced in this way on the metal surface are believed to be instrumental in increasing the load-carrying capacity of the steel surfaces in sliding and rolling contact, especially in the presence of mineral oils.

Author(s):  
W. G. Robertson ◽  
D. T. Spillman

The friction of run-in flat steel specimens lubricated with plain mineral oils has been measured in a pin and disc machine over a wide range of operating conditions. The hydrodynamic region was identified with the aid of electrical contact measurements and the corresponding friction data were considered in terms of the various theories which have been proposed to explain hydrodynamic action in nominally flat sliding contacts. It was concluded that the Lewicki inflow, the surface roughness, and the viscosity-density wedge mechanisms could not explain the observed friction; but that it could be explained if the surfaces formed a wedge whose angle was constant over the whole range of operating conditions. It is suggested that the wedge may be formed during the running-in process by mechanical effects such as flexural distortion. Particularly striking is the strength of the hydrodynamics which can occur in such ‘flat’ contacts: in terms of the wedge analysis the contact was operating close to the maximum theoretical load-carrying capacity. The implications with respect to the use of the pin and disc machine as a test rig are discussed and it is suggested that there might be a practical application in the design of ‘self-adjusting‘ slider bearings.


Author(s):  
Karl-Heinz Zum Gahr ◽  
Mario Mann

Effect of surface microtexturing with spherical dimples of 60 μm diameter on friction behaviour of steel 100Cr6/sapphire pairs was studied as function of lubricant viscosity. Tests were run at unidirectional sliding up to 0.30 m/s using a pellet-on-disc geometry with flat contact area and drip lubrication with liquids such as glycerine-water solutions, distilled water and different mineral oils without additives. The texture pattern was produced on the polished sapphire discs by laser ablation processes. Friction force and film thickness of the lubricating liquid were continuously measured during the tests at different sliding velocities. Results showed that effectiveness of microtexturing in reducing friction and increasing load-carrying capacity depended on viscosity of the lubricant, operating conditions such as sliding velocity and applied load as well as texture parameters.


2020 ◽  
Vol 65 (1) ◽  
pp. 28-41
Author(s):  
Marwa Aly Ahmed ◽  
Júlia Erdőssy ◽  
Viola Horváth

Multifunctional nanoparticles have been shown earlier to bind certain proteins with high affinity and the binding affinity could be enhanced by molecular imprinting of the target protein. In this work different initiator systems were used and compared during the synthesis of poly (N-isopropylacrylamide-co-acrylic acid-co-N-tert-butylacrylamide) nanoparticles with respect to their future applicability in molecular imprinting of lysozyme. The decomposition of ammonium persulfate initiator was initiated either thermally at 60 °C or by using redox activators, namely tetramethylethylenediamine or sodium bisulfite at low temperatures. Morphology differences in the resulting nanoparticles have been revealed using scanning electron microscopy and dynamic light scattering. During polymerization the conversion of each monomer was followed in time. Striking differences were demonstrated in the incorporation rate of acrylic acid between the tetramethylethylenediamine catalyzed initiation and the other systems. This led to a completely different nanoparticle microstructure the consequence of which was the distinctly lower lysozyme binding affinity. On the contrary, the use of sodium bisulfite activation resulted in similar nanoparticle structural homogeneity and protein binding affinity as the thermal initiation.


2005 ◽  
Vol 10 (2) ◽  
pp. 151-160 ◽  
Author(s):  
J. Kala ◽  
Z. Kala

Authors of article analysed influence of variability of yield strength over cross-section of hot rolled steel member to its load-carrying capacity. In calculation models, the yield strength is usually taken as constant. But yield strength of a steel hot-rolled beam is generally a random quantity. Not only the whole beam but also its parts have slightly different material characteristics. According to the results of more accurate measurements, the statistical characteristics of the material taken from various cross-section points (e.g. from a web and a flange) are, however, more or less different. This variation is described by one dimensional random field. The load-carrying capacity of the beam IPE300 under bending moment at its ends with the lateral buckling influence included is analysed, nondimensional slenderness according to EC3 is λ¯ = 0.6. For this relatively low slender beam the influence of the yield strength on the load-carrying capacity is large. Also the influence of all the other imperfections as accurately as possible, the load-carrying capacity was determined by geometrically and materially nonlinear solution of very accurate FEM model by the ANSYS programme.


2005 ◽  
Vol 10 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Z. Kala

The load-carrying capacity of the member with imperfections under axial compression is analysed in the present paper. The study is divided into two parts: (i) in the first one, the input parameters are considered to be random numbers (with distribution of probability functions obtained from experimental results and/or tolerance standard), while (ii) in the other one, the input parameters are considered to be fuzzy numbers (with membership functions). The load-carrying capacity was calculated by geometrical nonlinear solution of a beam by means of the finite element method. In the case (ii), the membership function was determined by applying the fuzzy sets, whereas in the case (i), the distribution probability function of load-carrying capacity was determined. For (i) stochastic solution, the numerical simulation Monte Carlo method was applied, whereas for (ii) fuzzy solution, the method of the so-called α cuts was applied. The design load-carrying capacity was determined according to the EC3 and EN1990 standards. The results of the fuzzy, stochastic and deterministic analyses are compared in the concluding part of the paper.


2005 ◽  
Vol 33 (4) ◽  
pp. 210-226 ◽  
Author(s):  
I. L. Al-Qadi ◽  
M. A. Elseifi ◽  
P. J. Yoo ◽  
I. Janajreh

Abstract The objective of this study was to quantify pavement damage due to a conventional (385/65R22.5) and a new generation of wide-base (445/50R22.5) tires using three-dimensional (3D) finite element (FE) analysis. The investigated new generation of wide-base tires has wider treads and greater load-carrying capacity than the conventional wide-base tire. In addition, the contact patch is less sensitive to loading and is especially designed to operate at 690kPa inflation pressure at 121km/hr speed for full load of 151kN tandem axle. The developed FE models simulated the tread sizes and applicable contact pressure for each tread and utilized laboratory-measured pavement material properties. In addition, the models were calibrated and properly validated using field-measured stresses and strains. Comparison was established between the two wide-base tire types and the dual-tire assembly. Results indicated that the 445/50R22.5 wide-base tire would cause more fatigue damage, approximately the same rutting damage and less surface-initiated top-down cracking than the conventional dual-tire assembly. On the other hand, the conventional 385/65R22.5 wide-base tire, which was introduced more than two decades ago, caused the most damage.


Sign in / Sign up

Export Citation Format

Share Document