Flexural Stresses in Curved Beams of I- and Box-section

1950 ◽  
Vol 163 (1) ◽  
pp. 295-306 ◽  
Author(s):  
C. G. Anderson

A mathematical and experimental investigation is made of the stresses resulting from the flexure of curved beams of I- and box-section. It is shown that the flanges, if unsupported, distort under the influence of radial stress-components, and are less effective in carrying the circumferential bending stresses than would appear from ordinary methods of calculation. The distortion is accompanied by transverse bending stresses which, in certain circumstances, may be of greater magnitude than the circumferential stresses, and which at the inner radius combine with the circumferential stresses to introduce critical stress conditions. The distortion effects may be limited by using thick, narrow flanges, by ample fillets between the flanges and the webs, by radial gussets and by suitable disposition of the webs in box-sections. Formulae and charts for the estimation of stresses are presented in convenient form for design purposes.

2021 ◽  
Vol 224 ◽  
pp. 108730
Author(s):  
Farzad Farvizi ◽  
Bruce W. Melville ◽  
Asaad Y. Shamseldin ◽  
Seyedreza Shafiei ◽  
Ehsan Hendi

MRS Bulletin ◽  
1995 ◽  
Vol 20 (1) ◽  
pp. 37-39 ◽  
Author(s):  
B.H. Rabin ◽  
R.L. Williamson ◽  
S. Suresh

When a discontinuity in material properties exists across a bonded interface, stresses are generated as a result of any thermal or mechanical loading. These stresses significantly affect strength and failure characteristics and may be large enough to prevent successful fabrication of a reliable joint. The use of an interlayer material to successfully reduce mismatch stresses, thereby preventing joint failure or improving joint strength and reliability, requires knowledge of failure mechanisms and of the effects of interlayer properties on the critical stress components.The origin of residual stresses developed during cooling of a ceramic-metal joint from an elevated fabrication temperature is illustrated qualitatively in Figure 1. Away from edges, the in-plane (parallel to interface) stresses are typically compressive in the ceramic and tensile in the metal. These stresses can cause cracking perpendicular to the interface, leading to spalling or delamination failures. Such failures are frequently observed in thin-film and coating geometries. Where the interface intersects a free edge, large shear and axial (perpendicular to the interface) stresses are generated. The edge stresses are typically tensile within the ceramic and tend to promote crack propagation within the ceramic parallel and adjacent to the interface. This is the most commonly observed failure mode in bonded structural components.


2021 ◽  
Vol 88 (3) ◽  
Author(s):  
Marcela Areyano ◽  
Jamie A. Booth ◽  
Dane Brouwer ◽  
Luke F. Gockowski ◽  
Megan T. Valentine ◽  
...  

Abstract Experimental evidence suggests that suction may play a role in the attachment strength of mushroom-tipped adhesive structures, but the system parameters which control this effect are not well established. A fracture mechanics-based model is introduced to determine the critical stress for defect propagation at the interface in the presence of trapped air. These results are compared with an experimental investigation of millimeter-scale elastomeric structures. These structures are found to exhibit a greater increase in strength due to suction than is typical in the literature, as they have a large tip diameter relative to the stalk. The model additionally provides insight into differences in expected behavior across the design space of mushroom-shaped structures. For example, the model reveals that the suction contribution is length-scale dependent. It is enhanced for larger structures due to increased volume change, and thus the attainment of lower pressures, inside of the defect. This scaling effect is shown to be less pronounced if the tip is made wider relative to the stalk. An asymptotic result is also provided in the limit that the defect is far outside of the stalk, showing that the critical stress is lower by a factor of 1/2 than the result often used in the literature to estimate the effect of suction. This discrepancy arises as the latter considers only the balance of remote stress and pressure inside the defect and neglects the influence of compressive tractions outside of the defect.


2000 ◽  
Vol 2000 (0) ◽  
pp. 71-72
Author(s):  
Sachiko SEKI ◽  
Satoshi SATO ◽  
Akio ASANO ◽  
Ryoichi SATO

2008 ◽  
Vol 130 (8) ◽  
Author(s):  
Christine Vehar Jutte ◽  
Sridhar Kota

A nonlinear spring has a defined nonlinear load-displacement function, which is also equivalent to its strain energy absorption rate. Various applications benefit from nonlinear springs, including prosthetics and microelectromechanical system devices. Since each nonlinear spring application requires a unique load-displacement function, spring configurations must be custom designed, and no generalized design methodology exists. In this paper, we present a generalized nonlinear spring synthesis methodology that (i) synthesizes a spring for any prescribed nonlinear load-displacement function and (ii) generates designs having distributed compliance. We introduce a design parametrization that is conducive to geometric nonlinearities, enabling individual beam segments to vary their effective stiffness as the spring deforms. Key features of our method include (i) a branching network of compliant beams used for topology synthesis rather than a ground structure or a continuum model based design parametrization, (ii) curved beams without sudden changes in cross section, offering a more even stress distribution, and (iii) boundary conditions that impose both axial and bending loads on the compliant members and enable large rotations while minimizing bending stresses. To generate nonlinear spring designs, the design parametrization is implemented into a genetic algorithm, and the objective function evaluates spring designs based on the prescribed load-displacement function. The designs are analyzed using nonlinear finite element analysis. Three nonlinear spring examples are presented. Each has a unique prescribed load-displacement function, including a (i) “J-shaped,” (ii) “S-shaped,” and (iii) constant-force function. A fourth example reveals the methodology’s versatility by generating a large displacement linear spring. The results demonstrate the effectiveness of this generalized synthesis methodology for designing nonlinear springs for any given load-displacement function.


1977 ◽  
Vol 44 (3) ◽  
pp. 455-461 ◽  
Author(s):  
H. C. Wu ◽  
R. F. Yao ◽  
M. C. Yip

Polymethylmethacrylate (PMMA) plates with angled elliptic notch are experimentally investigated under monotonic tension. The major interests of this investigation are the direction of crack initiation on the boundary of the notch and the critical stress that causes the crack initiation. It is found that the “fracture angle” in this investigation is generally smaller than that obtained from PMMA plate with slit crack which was reported in the literature. Furthermore, the paths of crack propagation are experimentally determined and “lance-like” fracture surface is observed.


2001 ◽  
Vol 124 (1) ◽  
pp. 129-135 ◽  
Author(s):  
Shuting Li

This paper analyzed the deformations and bending stresses of a three-dimensional (3D), thin-rimmed gear (TRG) through using the finite element method (FEM) and a whole gear deformation model. The gear’s deformations and stresses at every part are analyzed in detail. In contrast with tooth bending deformations of a solid gear, 3D-TRG has not only tooth bending deformations, but also rim and web bending deformations. This paper found that the thin rim and web share about 70% deformations in the total deformations of the 3D-TRG and the gear tooth share only about 30%. It is also pointed out by this paper that not only the root stresses of the 3D-TRG are much greater than the solid gear because of the rim and web deformations, but also there are much greater stresses existing in the joint of the thin rim and the web. Especially, when the rim thickness becomes very thin, stresses at the joint shall become much greater than the root stresses. It is very necessary to regard the joint as the second critical stress point as well as the tooth root when to design 3D-TRG.


Sign in / Sign up

Export Citation Format

Share Document