Effect of Pre-Injection Fuel Temperature upon Diesel Engine Ignition Delay and Soot Emission

1973 ◽  
Vol 187 (1) ◽  
pp. 395-404 ◽  
Author(s):  
R. W. Tempk-Pediani

The effect of pre-injection fuel temperature upon the ignition delay and soot emission has been investigated on an i.d.i. engine running on diesel oil. Effects of evaporation in the engine cycle, at both subcritical and supercritical pressures, are discussed and attention focused on the probable attainment of the critical temperature by liquid droplets in certain ambient conditions. Stress is laid on the future need concurrently to optimize the injection equipment and the level of air swirl to realize the potential of fuel preheating.

1973 ◽  
Vol 187 (1) ◽  
pp. 395-404 ◽  
Author(s):  
R. W. Tempk-Pediani

The effect of pre-injection fuel temperature upon the ignition delay and soot emission has been investigated on an i.d.i. engine running on diesel oil. Effects of evaporation in the engine cycle, at both subcritical and supercritical pressures, are discussed and attention focused on the probable attainment of the critical temperature by liquid droplets in certain ambient conditions. Stress is laid on the future need concurrently to optimize the injection equipment and the level of air swirl to realize the potential of fuel preheating.


2000 ◽  
Vol 1 (1) ◽  
pp. 1-27 ◽  
Author(s):  
A. M. Lippert ◽  
D. W. Stanton ◽  
C. J. Rutland ◽  
W. L. H. Hallett ◽  
R. D. Reitz

The complex physical processes occurring during cold starting of diesel engines mandate the use of advanced physical submodels in computations. The present study utilizes a continuous probability density function to represent more fully the range of compositions of commercial fuels. The model was applied to singledroplet calculations to validate the predictions against experimental results. Analysis of a high-pressure diesel spray showed axial composition gradients within the spray. Previous wall-film modelling was extended to include the continuous multicomponent fuel representation. Using these models, the cold-start behaviour of a heavy-duty diesel engine was analysed. The predictions show that multicomponent fuel modelling is critical to capturing realistic vaporization trends. In addition, the spray-film interaction modelling is crucial to capturing the spray impingement and subsequent secondary atomization. Heating the intake air temperature was shown to result in reduced ignition delay and accelerated vaporization. Increasing the fuel temperature increased vaporization prior to and away from the initial heat release. Increasing the injection pressure increased vaporization without much change in the ignition delay. Split injections, with 75 per cent of the fuel contained in the second pulse, displayed a substantial reduction in ignition delay due to ignition of the first pulse. The timing of the first injection was found to be an important parameter due to differences in the spray impingement behaviour with different timings.


2019 ◽  
Vol 179 (4) ◽  
pp. 226-235
Author(s):  
Winicjusz STANIK ◽  
Jerzy CISEK

This publication is the next part of the article “The influence of cetane-detergent additives in diesel fuel increased to 10% of RME content on energy parameters and exhaust gas composition of a diesel engine”. The cause-effect analysis of the phenomena related to the impact of 3 additive packages used in diesel oil with RME content increased to 10% (compare to standard diesel fuel with 7% of RME) was described. The basis for the analysis of the impact of the tested fuels on energy parameters and composition of exhaust gases were the parameters of indicator diagrams and heat release parameters. It was found that the first set of additives affects the delay of auto-ignition of fuel and kinetic fuel combustion speed only at low engine loads. In this range of engine operation the NOx concentration in the exhaust gas is low and besides there is a large of EGR.The second additive package was operated at high engine loads but its impact on the lower self-ignition delay was quantitatively small. Therefore, in the third packet of additives, the amount of additives used in the second packet was doubled. Then a satisfactory shortening of the self-ignition delay and reduction of the max rate of kinematic heat release was achieved as a reason of a reduction of NOx concentration in the exhaust up to 8% (compared to the reference fuel).


Author(s):  
Zhentao Liu ◽  
Jinlong Liu

Market globalization necessitates the development of heavy duty diesel engines that can operate at altitudes up to 5000 m without significant performance deterioration. But the current scenario is that existing studies on high altitude effects are still not sufficient or detailed enough to take effective measures. This study applied a single cylinder direct injection diesel engine with simulated boosting pressure to investigate the performance degradation at high altitude, with the aim of adding more knowledge to the literature. Such a research engine was conducted at constant speed and injection strategy but different ambient conditions from sea level to 5000 m in altitude. The results indicated the effects of altitude on engine combustion and performance can be summarized as two aspects. First comes the extended ignition delay at high altitude, which would raise the rate of pressure rise to a point that can exceed the maximum allowable limit and therefore shorten the engine lifespan. The other disadvantage of high-altitude operation is the reduced excess air ratio and gas density inside cylinder. Worsened spray formation and mixture preparation, together with insufficient and late oxidation, would result in reduced engine efficiency, increased emissions, and power loss. The combustion and performance deteriorations were noticeable when the engine was operated above 4000 m in altitude. All these findings support the need for further fundamental investigations of in-cylinder activities of diesel engines working at plateau regions.


2021 ◽  
Author(s):  
Elias A. Yfantis ◽  
Efthymios G. Pariotis ◽  
Theodoros C. Zannis ◽  
Konstantina Asimakopoulou

The energy and the exergy performance of a dual-loop Organic Rankine Cycle (ORC), which harvests exhaust heat from a two-stroke slow-speed main marine diesel engine of a bulk carrier is examined herein. An energy analysis is adopted to calculate the energy flows to the components of the high-temperature (HT) and the low-temperature (LT) loops of the bottoming ORC and through them, to calculate the energy efficiency of the ORC and the generated power from both expanders. Also, an exergy analysis is implemented to predict the irreversibility rates of the components of both HT and LT loops of the ORC system. Various organic fluids are examined for the HT and the LT ORC loops and the optimum combination is selected based on the results of a parametric analysis. The effect of ambient conditions on the energetic and exergetic performance of the dual-loop ORC is examined. The energy analysis of the bottoming dual-loop ORC is projected to a specific mission operational profile of a bulk carrier for predicting the benefits in fuel cost saving and CO2 and SO2 emission reduction compared to conventional vessel operation.


2017 ◽  
Vol 10 (2) ◽  
pp. 93 ◽  
Author(s):  
Anh Tuan Hoang

Pure vegetable oils have the greatest promise for alternative fuels for internal combustion engines beside the depletion of conventional petroleum resources. Among various possible options, pure vegetable oils present promising of greener air substitutes for fossil fuels. Pure vegetable oils, due to the agricultural origin, liquidity, ready availability, renewability, biodegradability are able to reduce the CO2 emissions in the atmosphere. Also, in Vietnam, pure vegetable oils such as soybean oil (SoO100), coconut oil (CO100) and sunflower oil (SuO100) are available. The paper presents the results of using heated pure vegetable oils for diesel engine D243 with power of 80 hp (58.88) kW. The results of determining the power (Ne), specific fuel consumption (SFC) and efficiency (n) are used to evaluate the performance of engine. The results show that, the engine power (Ne) is 10%-15% lower, the SFC of engine D243 using pure vegetable oils is 3%-5% higher and the η is 2.5%-6.2% lower compared to diesel oil (DO). Among the pure vegetable oils, the best performance results for D243 diesel engine are obtained from heated pure sunflower oil up to 135oC.


Author(s):  
C Arcoumanis ◽  
J H Whitelaw ◽  
P Flamang

The flow in the inlet manifold of a Ford direct injection diesel engine has been characterized by laser Doppler anemometry under motored conditions at engine speeds between 300 and 1100 r/min. Plexiglass windows have been inserted at three locations in adjacent manifold branches of the four-cylinder engine and back-scatter LDA was used to provide information about the ensemble-averaged and in-cycle axial and radial velocities at various spatial locations within the inlet channels during the engine cycle.


Author(s):  
M Abu-Qudais ◽  
D. B. Kittelson

The purpose of this research was to investigate the influence of the in-cylinder surfaces on the net emission of the particulate matter in the exhaust of a single cylinder, diesel engine. In order to obtain this information, time-resolved sampling was done to characterize the particulate matter emitted in the engine exhaust. A rotating probe sampled the free exhaust plume once each engine cycle. The rotation of the probe was synchronized with the engine cycle in such a way that the samples could be taken at any predetermined crank angle degree window. The sampling probe was designed for isokinetic sampling in order to obtain reliable results. To characterize the exhaust particulate in real time, a filter for mass concentration measurements was used. The results showed about 45 per cent higher mass concentrations as well as particles of larger diameter emitted during blowdown than late in the displacement phase of the exhaust stroke. This suggests that high in-cylinder shear rates and velocities which are associated with the blowdown process, cause the deposited soot to be re-entrained from the surfaces of the combustion chamber, where re-entrainment is favoured by conditions of high surface shear. A mathematical model to predict the amount of soot re-entrained from the cylinder walls is presented. This model is based on information presented in the literature along with the results of the time-resolved measurements of mass concentration. This model supported the hypothesis of soot deposition during the combustion process, with subsequent re-entrainment during the blowdown process of the exhaust stroke.


Sign in / Sign up

Export Citation Format

Share Document