The Pad and Quad Resistors - Two New Methods of Fluid Flow Measurements

1976 ◽  
Vol 190 (1) ◽  
pp. 205-214 ◽  
Author(s):  
S. A. Morsi

This paper describes two methods of fluid flow measurements of the differential pressure type. The first method uses a new type of linear resistor in which the flow rate is linearly proportional to the pressure drop. This linear resistor, called a pad-resistor, may be used in a single configuration when the flow rate is limited to small values. For a flowmeter of high capacity and low resistance a multi-pad multi-stage configuration, where several pad-resistors are connected in parallel, has been adopted. The second method uses a non-linear resistor called a quad-resistor. This type of resistor has a flow characteristic proportional to the fourth order of the pressure drop. By combining the quad-resistor with an orifice, the relationship between the pressure drop and the flow rate becomes approximately linear. The quad-resistor has been used in conjunction with a fluidic analogue amplifier to give a linearized output pressure proportional to the flow rate in a fluid duct.

2018 ◽  
Vol 13 (3) ◽  
pp. 1-10 ◽  
Author(s):  
I.Sh. Nasibullayev ◽  
E.Sh Nasibullaeva ◽  
O.V. Darintsev

The flow of a liquid through a tube deformed by a piezoelectric cell under a harmonic law is studied in this paper. Linear deformations are compared for the Dirichlet and Neumann boundary conditions on the contact surface of the tube and piezoelectric element. The flow of fluid through a deformed channel for two flow regimes is investigated: in a tube with one closed end due to deformation of the tube; for a tube with two open ends due to deformation of the tube and the differential pressure applied to the channel. The flow rate of the liquid is calculated as a function of the frequency of the deformations, the pressure drop and the physical parameters of the liquid.


1988 ◽  
Vol 11 (3) ◽  
pp. 186-190 ◽  
Author(s):  
N. Kabei ◽  
E. Shimemura ◽  
Y. Sakurai ◽  
K. Tsuchiya

The authors developed a portable air driving unit for an artificial heart. As the portable energy source of the driver, a commercially available Ni-Cd battery was used. A linear compressor was selected as a portable size compressor. To reduce the number of parts to be assembled, a new type of pneumatic system was employed. In this system, the pressure level was regulated by varying the output flow rate of the compressor instead of using a pressure regulator and large air reservoirs. A one-board microcomputer and pressure sensors were used to control the pressure level. The total weight of the unit is 9.5 Kg. After assembling the components into the portable unit, a blood pump was connected to examine the output characteristics of the system. It was confirmed that the unit could drive the blood pump continuously for more than 2 hours under the following conditions: output flow rate of the blood pump = 5 L/min and output pressure — 100 mmHg.


1985 ◽  
Vol 39 (6) ◽  
pp. 916-920 ◽  
Author(s):  
R. K. Skogerboe ◽  
S. J. Freeland

This paper describes the results of the first stage of an investigation designed to extend present knowledge of the factors affecting aerosol production, transport, vaporization, and atomization in analytical spectroscopy systems. It focuses on factors controlling aspiration of aqueous solutions. The results demonstrate that the effect of gas flow on the pressure drop induced at the tip of the solution draw tube can be described by a simple linear equation; that the relationship between gas flow rate and solution nebulization rate can also be modelled by a simple equation; and that these relationships are not adequately represented by the Hagen-Poiseulle equation, as is often claimed.


Author(s):  
RW Dwyer

AbstractA theoretical model of the pressure drop across a fibrous cigarette filter is derived. The pressure drop is expressed as a function of the filter dimensions, the fiber tow characteristics, the filter weight, the fluid flow rate, and a filter fiber factor. The fiber factor is affected by the distribution of the fibers within the filter, the relative orientations of the fibers, and their cross-sectional shapes. The model allows one to accurately calculate the influences of these variables on the filter pressure drop. Additionally, it can be used to predict capability curves and select an optimum cellulose acetate tow for a given filter pressure drop.


Author(s):  
Ahmad Zaifazlin Zainordin ◽  
Gigih Priyandoko ◽  
Zamri Mohamed

Magnetorheological (MR) damper as a semi-active system for a vehicle suspension is simulated in this study. The proposed design of Magnetorheological (MR) valve consists of meandering flow channel or gaps that fixed in the piston of the damper. The focus of this study is to estimate the performance of proposed MR valve based on actual front suspension parameter of a vehicle. Annular and radial gaps are combined to produce an MR valve with meandering fluid flow path. Furthermore, the damper is filled with Magnetorheological (MR) fluid to energize the damper under the presence of magnetic fields. The magnetic flux density within each gap is obtained via the Finite Element Method Magnetics (FEMM) software. Therefore, the yield stress of MR fluid and magnetic flux relationships both can be predicted. The present paper shows a reduction in pressure drop when the thickness of each gap is increased. Pressure drop is closely affected by the fluid flow rate that enters each gap. This means that the lower flow rate increases the pressure drop of MR valve at various current.


SPE Journal ◽  
2018 ◽  
Vol 23 (05) ◽  
pp. 1603-1614 ◽  
Author(s):  
Wanjing Luo ◽  
Changfu Tang ◽  
Yin Feng

Summary This study aims to develop a semianalytical model to calculate the productivity index (PI) of a horizontal well with pressure drop along the wellbore. It has been indicated that by introducing novel definitions of horizontal-well permeability and conductivity, the equation of fluid flow along a horizontal well with pressure drop has the same form as the one for fluid flow in a varying-conductivity fracture. Thus, the varying-conductivity-fracture model and PI model can be used to obtain the PI of a horizontal well. Results indicate that the PI of a horizontal well depends on the interaction between horizontal-well conductivity, penetration ratio, and Reynolds number. New type curves of the penetration ratios with various combinations of parameters have been presented. A complete-penetration zone and a partial-penetration zone can be identified on the type curves. Based on the type curves, two examples have also been presented to illustrate the advantages of this work in optimizing parameters of horizontal wells.


Author(s):  
Oleg V. Matvienko ◽  
Alyona E. Litvinova

This paper deals with the flow of bitumen binder in a cylindrical tube described by the Hershel-Bulkley fluid. The dependence is suggested for the fluid flow rate and the pressure drop. Dependences are also determined for the radial velocity distribution and effective viscosity. It is found that at a low pressure drop, the non-Newtonian properties of the medium lead to a significant hydraulic resistance due to the internal structure. With an increase in the pressure drop, the hydraulic resistance of the flow decreases.


2012 ◽  
Vol 505 ◽  
pp. 524-533 ◽  
Author(s):  
Abdulati Muftah Mohamed Ibrahim ◽  
Bashir Rahuma Elhub ◽  
H. Abas A. Wahab

In this paper, heat transfer and fluid flow monitoring experiments for pressure drop and efficiency were performed to investigate the fluid flow characteristics of rifled tubes in comparison with a smooth tube. The rifled tube has an outer diameter of 25mm, maximum inner diameter of 18.8 mm; minimum inner diameter of 17.50mm, rib height of 0.6835, rib width of 9.25, helix angles 60 o and the number of starts is four. The smooth tube has an outer diameter of 26.7mm and an inner diameter of 18.88 mm, with a wall thickness of 3.91mm. The experiments were conducted on a vertical orientation of the steel tubes (rifled and smooth) under varying flow rate of 15, 30, 40, 50, 60 and 70. The fluid used is 131.64 litres of water and the initial temperature is 25oC. The fluid is raised to an average temperature of 33oC during the experimental study. During the experiment, it was found that at 360 mins for the smooth tube, an increase in flow rate does not affect the time for the fluid (water) to attain a temperature of 33oC. For the rifled tube, as the flow rate increases, the time for the fluid (water) to attain a temperature of 33oC also increases. This is as a result of the effect of ribbing the tube. The time taken to attain the optimum temperature of 33oC is shorter using the rifled tube than the smooth tube. The rifled tube has heat transfer efficiency higher than the smooth tube. The pressure drop and the energy consumed by using the rifled tube were also found to be less than that of the smooth tube. The pressure drop increase factor was found to be 0.85 in the spirally rifled tube as compared to the smooth tube at the different flow rates. The enhancement effect of ribbing the tube is apparent.


Sign in / Sign up

Export Citation Format

Share Document