Semi-Solid Processing of Aluminium and High Melting Point Alloys

Author(s):  
P Kapranos ◽  
D H Kirkwood ◽  
C M Sellars

Thixoforging (a semi-solid metal-forming process) of non-dendritic A357 aluminium alloy has been studied to assess the effects of process variables on the component integrity. Complete filling of the dies required ram velocities in excess of 300 mm/s and centre-line porosity in the thixoforged components was reduced by ram loads up to 55 kN. The mechanical properties of these thixoforgings were superior to conventionally cast alloy. Some work has also been carried out on M2 tool steel and Stellite 21 to demonstrate that these alloys may be thixoforged to complex shapes with good mechanical properties.

2011 ◽  
Vol 491 ◽  
pp. 145-150 ◽  
Author(s):  
Marcelo Martins ◽  
Sérgio Tonini Button ◽  
José Divo Bressan

Hot extrusion is a metal forming process with a huge importance in the manufacturing of long metallic bars with complex shapes, and because of this, academics and industries are especially interested in better understanding how metal flows during the process. In order to have a reliable computational tool that can help to solve and to obtain material internal flow, experimental tests and numerical simulation with the finite element method were carried out to obtain results of the velocity fields generated in hot direct extrusion of aluminum billets (aluminum alloy 6351). The experimental results of the velocity field will be used to validate a computational code based on the finite volume method.


2019 ◽  
Vol 28 (6) ◽  
pp. 77-83
Author(s):  
Jorge Carlos León Anaya ◽  
José Antonio Juanico Loran ◽  
Juan Carlos Cisneros Ortega

Numerical analysis for Tube Hydroforming (THF) was developed in this work to predict the behavior of extruded aluminum tube in a forming die for beverage can applications. THF is a metal forming process dependent of three parameters: friction between the tube and the die, internal pressure, and material properties of the tube. Strain hardening is a governing phenomenon that occurs in the plastic deformation process of metals. Hollomon’s equation offers a mathematical description of the metal behavior in the plastic zone. For a proper simulation, experimental determination of the mechanical properties of aluminum 6061-T5 were conducted and test specimens where obtained directly from the aluminum tube. Experimental data were necessary because no sufficient data of the mechanical properties of the tube were available in the literature. Numerical simulations of THF were performed, and the results were compared with analytical results for validation purposes with less than 10% of error.


2010 ◽  
Vol 145 ◽  
pp. 353-360 ◽  
Author(s):  
Ren Guo Guan ◽  
Zhan Yong Zhao ◽  
Fu Rong Cao ◽  
Xiao Ping Sun ◽  
Qi Sheng Zhang

Based on continuous casting and extrusion (CAXTEX) process, a semisolid metal forming process, continuous rheo-extrusion of magnesium alloy, was proposed. Effect of casting temperature on semisolid region distribution, microstructure formation and stability of forming process, as well as microstructure and mechanical properties of the AZ31 alloy fabricated by the process were investigated. Microstructure evolution from dendrite to rosette or spherical grains was observed with the application of large shearing force provided by the roll. The results indicate that semisolid region in the roll-shoe gap moves downward gradually with the increase of casting temperature, and proper casting temperature range of 730~750°C is suggested. Under the suggested casting temperature, 10×15mm sectional bar of AZ31 alloy with smooth surface and homogeneous striped microstructure has been obtained. As the product was aged for 14h at 180°C after 16h solution at 415°C, the ultimate tensile strength and elongation could reach 305MPa and 11.5%, respectively.


2012 ◽  
Vol 192-193 ◽  
pp. 36-46
Author(s):  
W.C. Keung ◽  
Xiang Jie Yang ◽  
Wei Wei Shan

Rheological forming, a semi-solid metal forming process, is one of the manufacturing technologies for near net shape forming. The technology has attracted global academic research interests in recent years. This paper presents the current status of industrial applications of the semi-solid rheological forming technology in the China mainland. A variety of semi-solid slurry preparation techniques have been adopted including electromagnetic stirring and low superheat pouring. Dedicated semi-solid rheological forming equipment developed by the local manufacturers have been highlighted. This paper also makes an attempt to review the crucial factors for successful industrial application of the semi-solid metal forming process.


2006 ◽  
Vol 116-117 ◽  
pp. 288-291 ◽  
Author(s):  
Jeong Min Kim ◽  
Bong Koo Park ◽  
Joong Hwan Jun ◽  
Ki Tae Kim ◽  
Woon Jae Jung

Various Mg-Al-Zn alloys with different Al and Zn contents were fabricated by conventional casting and semi-solid forming process. And the microstructure and mechanical properties of the alloys were investigated. In Mg-4%Al-(5~7)%Zn alloys most of the grain boundary phases were found to be Mg-Al-Zn while in Mg-6%Al or Mg-8%Al based alloys the Mg- Al-Zn phase coexisted with Mg17Al12 at grain boundaries. At room temperature the semi-solid formed alloys showed significantly higher tensile properties, especially elongation, than the conventionally cast alloys.


2012 ◽  
Vol 192-193 ◽  
pp. 515-520 ◽  
Author(s):  
Levente Kertesz ◽  
Mathias Liewald

The relatively high costs of processing titanium alloys and the high variability in the products' quality currently represent the major economic obstacles to using such materials in either production or medical engineering. For this reason, new research and development work at the Institute for Metal Forming Technology of the University of Stuttgart is pursuing the objective of improving and enhancing pre-existing processes for these types of materials. In doing this, aspects are considered which specify definite mechanical properties during and after the forming process as well as reduce the costs by means of cutting the manufacturing times, increase the use of semi-finished products and minimise finishing operations.


2016 ◽  
Vol 850 ◽  
pp. 790-801
Author(s):  
Hong Xu ◽  
Xin Zhang ◽  
Chang Shun Wang ◽  
Jin Chuan Hu ◽  
Cheng Wang ◽  
...  

AZ91D magnesium alloy is one of the most widely used magnesium alloys in the production of metal forming, which use the characteristics from liquid state to solid state of metal to form. The present status of the research and application of the semi-solid forming for AZ91D magnesium alloys at present was reviewed in this paper, including the microstructural characteristics, the thixotropic and rheological behavior, the forming process of semi-solid for AZ91D magnesium alloys and the mechanical properties of the parts made of semi-solid magnesium alloys. The developing prospects and the key points of the semi-solid forming for AZ91D magnesium alloys were forecasted, and the industrial application of the alloy were also discussed.


Procedia CIRP ◽  
2014 ◽  
Vol 18 ◽  
pp. 203-208 ◽  
Author(s):  
J. Enz ◽  
S. Riekehr ◽  
V. Ventzke ◽  
N. Sotirov ◽  
N. Kashaev

Sign in / Sign up

Export Citation Format

Share Document