Physical Modelling of Hip Joint Forces in Stair Climbing

Author(s):  
F J Shelley ◽  
D D Anderson ◽  
M J Kolar ◽  
M C Miller ◽  
H E Rubash

A test device has been developed and validated to simulate physiologic loading of the hip during stair climbing. Forces about the hip joint were measured in static simulations of stair climbing using simulated extensor, abductor and adductor muscle groups to support the joint. Femoral flexion angle (to model step length and height) and applied hip flexion moment (to model trunk lean) were varied to examine the effects of different loading conditions on the hip. In stair climbing the maximum total joint force was six times body weight at 34° of femoral flexion and 60 N m of hip flexion moment. Joint forces increased with hip flexion moment and varied little with femoral flexion angle, except for the posteriorly directed force. This component, which twists implants about the femoral shaft, increased with femoral flexion angle but changed little with hip flexion moment.

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Joshua T. Weinhandl ◽  
Bobbie S. Irmischer ◽  
Zachary A. Sievert

Alterations in hip joint loading have been associated with diseases such as arthritis and osteoporosis. Understanding the relationship between gait speed and hip joint loading in healthy hips may illuminate changes in gait mechanics as walking speed deviates from preferred. The purpose of this study was to quantify hip joint loading during the gait cycle and identify differences with varying speed using musculoskeletal modeling. Ten, healthy, physically active individuals performed walking trials at their preferred speed, 10% faster, and 10% slower. Kinematic, kinetic, and electromyographic data were collected and used to estimate hip joint force via a musculoskeletal model. Vertical ground reaction forces, hip joint force planar components, and the resultant hip joint force were compared between speeds. There were significant increases in vertical ground reaction forces and hip joint forces as walking speed increased. Furthermore, the musculoskeletal modeling approach employed yielded hip joint forces that were comparable to previous simulation studies and in vivo measurements and was able to detect changes in hip loading due to small deviations in gait speed. Applying this approach to pathological and aging populations could identify specific areas within the gait cycle where force discrepancies may occur which could help focus management of care.


2017 ◽  
Vol 63 ◽  
pp. 99-105 ◽  
Author(s):  
J. Van Houcke ◽  
A. Schouten ◽  
G. Steenackers ◽  
D. Vandermeulen ◽  
C. Pattyn ◽  
...  

2017 ◽  
Vol 11 (4) ◽  
pp. 562-569 ◽  
Author(s):  
Ken Sasaki ◽  
Michio Hongo ◽  
Naohisa Miyakoshi ◽  
Toshiki Matsunaga ◽  
Shin Yamada ◽  
...  

<sec><title>Study Design</title><p>In vivo biomechanical study using a three-dimensional (3D) musculoskeletal model for elderly individuals with or without pelvic retroversion.</p></sec><sec><title>Purpose</title><p>To evaluate the effect of pelvic retroversion on the sagittal alignment of the spine, pelvis, and lower limb in elderly females while standing and walking.</p></sec><sec><title>Overview of Literature</title><p>Patients with hip–spine syndrome have concurrent hip-joint and spine diseases. However, the dynamic sagittal alignment between the hip joint and spine has rarely been investigated. We used a 3D musculoskeletal model to evaluate global spinopelvic parameters, including spinal inclination and pelvic tilt (PT).</p></sec><sec><title>Methods</title><p>A total of 32 ambulant females (mean age=78 years) without assistance were enrolled in the study. On the basis of the radiographic measurement for PT, participants were divided into the pelvic retroversion group (R-group; PT≥20°) and the normal group (N-group; PT&lt;20°). A 3D musculoskeletal motion analysis system was used to analyze the calculated value for the alignment of spine, pelvis, and lower limb, including calculated (C)-PT, sagittal vertical axis (C-SVA), pelvic incidence, lumbar lordosis, T1 pelvic angle (C-TPA), as well as knee and hip flexion angles while standing and walking.</p></sec><sec><title>Results</title><p>While standing, C-PT and C-TPA in the R-group were significantly larger than those in the N-group. Hip angle was significantly smaller in the R-group than in the N-group, unlike knee angle, which did not show difference. While walking, C-SVA and C-TPA were significantly increased, whereas C-PT decreased compared with those while standing. The maximum hip-flexion angle was significantly smaller in the R-group than in the N-group. There was a significant correlation between the radiographic and calculated parameters.</p></sec><sec><title>Conclusions</title><p>The 3D musculoskeletal model was useful in evaluating the sagittal alignment of the spine, pelvis, and leg. Spinopelvic sagittal alignment showed deterioration while walking. C-PT was significantly decreased while walking in the R-group, indicating possible compensatory mechanisms attempting to increase coverage of the femoral head. The reduction in the hip flexion angle in the R-group was also considered as a compensatory mechanism.</p></sec>


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Christian Baumgart ◽  
Eduard Kurz ◽  
Jürgen Freiwald ◽  
Matthias Wilhelm Hoppe

Abstract Background and Methods During isokinetic knee strength testing, the knee flexion angles that correspond to the measured torque values are rarely considered. Additionally, the hip flexion angle during seated testing diverges from that in the majority of daily life and sporting activities. Limited information concerning the influence of hip angle, muscle contraction mode, and velocity on the isokinetic knee strength over the entire range of motion (ROM) is available. Twenty recreational athletes (10 females, 10 males; 23.3 ± 3.2 years; 72.1 ± 16.5 kg; 1.78 ± 0.07 m) were tested for isokinetic knee flexion and extension at 10° and 90° hip flexion with the following conditions: (i) concentric at 60°/s, (ii) concentric at 180°/s, and (iii) eccentric at 60°/s. The effects of hip angle, contraction mode, and velocity on angle-specific torques and HQ-ratios as well as conventional parameters (peak torques, angles at peak torque, and HQ-ratios) were analyzed using statistical parametric mapping and parametric ANOVAs, respectively. Results Generally, the angle-specific and conventional torques and HQ-ratios were lower in the extended hip compared to a flexed hip joint. Thereby, in comparison to the knee extension, the torque values decreased to a greater extent during knee flexion but not consistent over the entire ROM. The torque values were greater at the lower velocity and eccentric mode, but the influence of the velocity and contraction mode were lower at shorter and greater muscle lengths, respectively. Conclusions Isokinetic knee strength is influenced by the hip flexion angle. Therefore, a seated position during testing and training is questionable, because the hip joint is rarely flexed at 90° during daily life and sporting activities. Maximum knee strength is lower in supine position, which should be considered for training and testing. The angle-specific effects cannot be mirrored by the conventional parameters. Therefore, angle-specific analyses are recommended to obtain supplemental information and consequently to improve knee strength testing.


2019 ◽  
Vol 40 (11) ◽  
pp. 717-724 ◽  
Author(s):  
Naokazu Miyamoto ◽  
Kosuke Hirata

AbstractThe main purpose of the present study was to identify whether and to what extent the individual differences in range of motion and stiffness of the hip joint can account for that in muscle elasticity of the hamstring. Hip extension torque and shear moduli (a measure of elasticity) of the biceps femoris, semitendinosus, and semimembranosus were assessed in 21 young males during unilateral passive hip flexion in the knee-extended position from the anatomical position to the individual’s maximal hip flexion angle. Muscle shear modulus was quantified by using ultrasound shear wave elastography. The maximal hip flexion angle correlated negatively with the shear modulus of each muscle (−0.750 ≤ r ≤ −0.612). The joint stiffness correlated positively with the shear modulus of each muscle (0.711 ≤ r ≤ 0.747). These findings suggest that hip flexion ROM and joint stiffness can reflect significantly but only moderately the muscle elasticity of the hamstring.


1981 ◽  
Vol 10 (4) ◽  
pp. 175-187 ◽  
Author(s):  
M Kilvington ◽  
R M F Goodman

This paper describes the results obtained from implanting a strain gauged version of an ‘English’ hip joint replacement together with a totally implantable FM radio transmitter. The implant is based upon a new concept in the design of femoral hip components having a diminished head offset to reduce head load and improved stem shape permitting alignment of the neck along the theoretical axis of peak load transmitted during the gait cycle. The implant was inserted using the ‘English’ trochanteric approach (English, 1975) which further reduces the load on a prosthetic hip joint with the use of a spacer out from the redundant femoral head to rearrange the trochanteric muscle lever arms. The resulting axial load is detected by four strain gauges mounted on a ‘piston in cylinder’ arrangement contained within the thickened neck of the prosthesis. The single channel FM transmitter relays the gauge output to a signal processing unit to give a direct output of activity for recording on a UV recorder. Recordings were taken during implantation, recovery, walking (at three days) physiotherapy, stair climbing and walking over a period of forty days.


2016 ◽  
Vol 3 (suppl_1) ◽  
Author(s):  
Jan Van Houcke ◽  
Ashwin Schouten ◽  
Koen Vermeulen ◽  
Gilles Van Acker ◽  
Gunther Steenackers ◽  
...  

2016 ◽  
Vol 45 (4) ◽  
pp. 810-818 ◽  
Author(s):  
Michael A. Samaan ◽  
Benedikt J. Schwaiger ◽  
Matthew C. Gallo ◽  
Kiyoshi Sada ◽  
Thomas M. Link ◽  
...  

Background: Femoroacetabular impingement (FAI) is a morphological abnormality of the hip joint that results in functional impairments during various activities of daily living (ADL) such as walking. Purpose/Hypothesis: The purpose of this study was to determine if lower extremity joint loading differed between patients with FAI and controls and to determine whether these altered biomechanical parameters were associated with intra-articular abnormalities. It was hypothesized that patients with FAI would exhibit altered lower extremity joint loading during walking when compared with healthy controls and that these altered joint loading patterns would be associated with intra-articular abnormalities. Study Design: Controlled laboratory study. Methods: Lower extremity kinetics was assessed during walking at a self-selected speed in 15 presurgical patients with FAI and 34 healthy controls matched for age and body mass index. All participants underwent unilateral hip magnetic resonance imaging (MRI) to assess hip joint abnormalities. Hip joint abnormalities were assessed using a semiquantitative MRI-based scoring system. Self-reported outcomes of pain and function were obtained using the Hip disability and Osteoarthritis Outcome Score (HOOS), and physical performance was measured using the 6-minute walk test (6MWT). Group differences were assessed using an independent t test and analysis of variance. In the patients with FAI, associations of joint kinetics with HOOS subscores and intra-articular abnormalities were assessed using the Pearson ( r) and Spearman (ρ) correlation coefficients, respectively. Results: Compared with the control group, the FAI group exhibited a significantly increased severity of acetabular (FAI: 1.87 ± 1.55; control: 0.47 ± 0.79; P < .001) and femoral (FAI: 3.27 ± 2.79; control: 1.21 ± 1.55; P = .002) cartilage abnormalities, increased levels of pain (FAI: 65.0 ± 18.8; control: 98.2 ± 3.4; P = .001), and reduced function (FAI: 67.2 ± 21.5; control: 98.9 ± 3.4; P < .001) but similar walking speeds (FAI: 1.55 ± 0.19 m/s; control: 1.63 ± 0.22 m/s; P = .20) and 6MWT performance (FAI: 628.0 ± 91.2 m; control: 667.2 ± 73.4 m; P = .13). The FAI group demonstrated increased hip flexion moment impulses (FAI: 0.14 ± 0.04 N·m·s/kg; control: 0.11 ± 0.03 N·m·s/kg; P = .03), peak ankle dorsiflexion moments (FAI: 1.64 ± 0.16 N·m/kg; control: 1.46 ± 0.31 N·m/kg; P = .04), and ankle dorsiflexion moment impulses (FAI: 0.39 ± 0.07 N·m·s/kg; control: 0.31 ± 0.07 N·m·s/kg; P = .01) compared with the control group. Within the FAI group, an increased hip flexion moment impulse during walking was significantly correlated with increased pain ( r = −0.60, P = .03), decreased ADL ( r = −0.57, P = .04), and increased severity of acetabular cartilage abnormalities (ρ = 0.82, P < .01). Conclusion: Patients with FAI exhibited altered hip and ankle joint loading patterns during walking. These data suggest that patients with FAI demonstrate both local and distal joint alterations during walking and that hip joint loading is directly related to hip joint abnormalities. Clinical Relevance: The results of this study suggest that the hip flexion moment impulse may be an important biomechanical parameter to understand FAI, as the hip flexion moment impulse during walking was shown to be directly related to hip joint abnormalities on MRI.


2018 ◽  
Vol 29 (2) ◽  
pp. 215-221 ◽  
Author(s):  
Henrik Sørensen ◽  
Dennis B Nielsen ◽  
Julie S Jacobsen ◽  
Kjeld Søballe ◽  
Inger Mechlenburg

Background: Objective assessment of hip dysplasia patients’ functional hip joint status routinely involves gait analysis or isokinetic dynamometry. However, these methods have shown equivocal results and have not been employed in the same groups of patients and controls. Purpose: To assess hip flexor and abductor moments by isokinetic dynamometry in the dysplasia patient and controls, for which we previously reported smaller flexor and slightly larger abductor moments during gait in patients compared to controls. Methods: The study was designed as a prospective cohort study (Level of Evidence II) and conducted in a biomechanics laboratory at Aarhus University, Denmark, during 2011. Participants comprised 32 dysplasia patients and 32 age and gender matched controls. Outcome measures were static peak hip flexion moment at 15, 45 and 75° hip flexion; dynamic eccentric and concentric peak hip flexion moment at 60° and 120°/second; dynamic eccentric and concentric hip abductor moment at 30° and 60°/second. Results: Hip dysplasia patients had smaller eccentric peak flexion moments and smaller eccentric and concentric peak abduction moments at all tested velocities. Conclusion: Although dysplasia patients have weaker hip flexion and abductor muscles than controls, their abductor muscles are sufficiently strong to ensure normal function during gait. Hence, gait analysis alone might not reveal the true, subnormal hip joint status in dysplasia patients. We suggest that comprehensive assessment of hip joint function in dysplasia patients should include more strenuous activities than gait, particularly in young(er) patients who are likely to prefer a more active lifestyle.


Sign in / Sign up

Export Citation Format

Share Document