Effects Of Antioxidant Supplementation And Exercise Training On Erythrocyte Antioxidant Enzymes

2005 ◽  
Vol 37 (Supplement) ◽  
pp. S41
Author(s):  
Sue Marsh ◽  
Paul Laursen ◽  
Jeff Coombes
2006 ◽  
Vol 76 (5) ◽  
pp. 324-331 ◽  
Author(s):  
Marsh ◽  
Laursen ◽  
Coombes

Erythrocytes transport oxygen to tissues and exercise-induced oxidative stress increases erythrocyte damage and turnover. Increased use of antioxidant supplements may alter protective erythrocyte antioxidant mechanisms during training. Aim of study: To examine the effects of antioxidant supplementation (α-lipoic acid and α-tocopherol) and/or endurance training on the antioxidant defenses of erythrocytes. Methods: Young male Wistar rats were assigned to (1) sedentary; (2) sedentary and antioxidant-supplemented; (3) endurance-trained; or (4) endurance-trained and antioxidant-supplemented groups for 14 weeks. Erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GPX), and catalase (CAT) activities, and plasma malondialdehyde (MDA) were then measured. Results: Antioxidant supplementation had no significant effect (p > 0.05) on activities of antioxidant enzymes in sedentary animals. Similarly, endurance training alone also had no effect (p > 0.05). GPX (125.9 ± 2.8 vs. 121.5 ± 3.0 U.gHb–1, p < 0.05) and CAT (6.1 ± 0.2 vs. 5.6 ± 0.2 U.mgHb–1, p < 0.05) activities were increased in supplemented trained animals compared to non-supplemented sedentary animals whereas SOD (61.8 ± 4.3 vs. 52.0 ± 5.2 U.mgHb–1, p < 0.05) activity was decreased. Plasma MDA was not different among groups (p > 0.05). Conclusions: In a rat model, the combination of exercise training and antioxidant supplementation increased antioxidant enzyme activities (GPX, CAT) compared with each individual intervention.


2019 ◽  
Vol 25 (16) ◽  
pp. 1889-1912 ◽  
Author(s):  
Rosario Pastor ◽  
Josep A. Tur

Background: Antioxidant supplementation has become a common practice among athletes to theoretically achieve a reduction in oxidative stress, promote recovery and improve performance. Objective: To assess the effect of antioxidant supplements on exercise. Methods: A systematic literature search was performed up to January 2019 in MEDLINE via EBSCO and Pubmed, and in Web of Sciences based on the following terms: “antioxidants” [Major] AND “exercise” AND “adaptation”; “antioxidant supplement” AND “(exercise or physical activity)” AND “(adaptation or adjustment)” [MesH]. Thirty-six articles were finally included. Results: Exhaustive exercise induces an antioxidant response in neutrophils through an increase in antioxidant enzymes, and antioxidant low-level supplementation does not block this adaptive cellular response. Supplementation with antioxidants appears to decrease oxidative damage blocking cell-signaling pathways associated with muscle hypertrophy. However, upregulation of endogenous antioxidant enzymes after resistance training is blocked by exogenous antioxidant supplementation. Supplementation with antioxidants does not affect the performance improvement induced by resistance exercise. The effects of antioxidant supplementation on physical performance and redox status may vary depending on baseline levels. Conclusion: The antioxidant response to exercise has two components: At the time of stress and adaptation through genetic modulation processes in front of persistent pro-oxidant situation. Acute administration of antioxidants immediately before or during an exercise session can have beneficial effects, such as a delay in the onset of fatigue and a reduction in the recovery period. Chronic administration of antioxidant supplements may impair exercise adaptations, and is only beneficial in subjects with low basal levels of antioxidants.


1997 ◽  
Vol 82 (6) ◽  
pp. 1862-1868 ◽  
Author(s):  
Richard M. McAllister ◽  
Brian L. Reiter ◽  
John F. Amann ◽  
M. Harold Laughlin

McAllister, Richard M., Brian L. Reiter, John F. Amann, and M. Harold Laughlin. Skeletal muscle biochemical adaptations to exercise training in miniature swine. J. Appl. Physiol. 82(6): 1862–1868, 1997.—The primary purpose of this study was to test the hypothesis that endurance exercise training induces increased oxidative capacity in porcine skeletal muscle. To test this hypothesis, female miniature swine were either trained by treadmill running 5 days/wk over 16–20 wk (Trn; n = 35) or pen confined (Sed; n = 33). Myocardial hypertrophy, lower heart rates during submaximal stages of a maximal treadmill running test, and increased running time to exhaustion during that test were indicative of training efficacy. A variety of skeletal muscles were sampled and subsequently assayed for the enzymes citrate synthase (CS), 3-hydroxyacyl-CoA dehydrogenase, and lactate dehydrogenase and for antioxidant enzymes. Fiber type composition of a representative muscle was also determined histochemically. The largest increase in CS activity (62%) was found in the gluteus maximus muscle (Sed, 14.7 ± 1.1 μmol ⋅ min−1 ⋅ g−1; Trn, 23.9 ± 1.0; P < 0.0005). Muscles exhibiting increased CS activity, however, were located primarily in the forelimb; ankle and knee extensor and respiratory muscles were unchanged with training. Only two muscles exhibited higher 3-hydroxyacyl-CoA dehydrogenase activity in Trn compared with Sed. Lactate dehydrogenase activity was unchanged with training, as were activities of antioxidant enzymes. Histochemical analysis of the triceps brachii muscle (long head) revealed lower type IIB fiber numbers in Trn (Sed, 42 ± 6%; Trn, 10 ± 4; P < 0.01) and greater type IID/X fiber numbers (Sed, 11 ± 2; Trn, 22 ± 3; P < 0.025). These findings indicate that porcine skeletal muscle adapts to endurance exercise training in a manner similar to muscle of humans and other animal models, with increased oxidative capacity. Specific muscles exhibiting these adaptations, however, differ between the miniature swine and other species.


Author(s):  
Abubakar A. Panti ◽  
Constance E. Shehu ◽  
Yusuf Saidu ◽  
Karima A. Tunau ◽  
Emmanuel I. Nwobodo ◽  
...  

Background: PCOS is a condition with significant decrease in antioxidant with an increased risk of oxidative stress. Antioxidant supplementation has been shown to improve insulin sensitivity in PCOS and may improve outcome of management of PCOS. Objectives of this study were to determine the oxidative stress level of PCOS patients, to assess the effect of antioxidant supplementation on the outcome of management of PCOS and to compare with a control group.Methods: The study was a single blind randomised control trial involving 200 patients with PCOS. The study was conducted at Usmanu Danfodiyo University Teaching Hospital Sokoto. They were randomly divided into intervention and control groups and base line serum levels of oxidative stress marker, antioxidant enzymes, vitamins and minerals were determined. Antioxidant supplementation and placebo were given to the intervention and control groups respectively. All the patients had ovulation induction with clomiphene citrate and were followed up for 6 months. Outcome measures were clinical pregnancy or menstrual regularisation. Level of significance was <0.05.Results: There was statistical significance in the serum levels of oxidative stress marker, antioxidant enzymes, vitamins and minerals between the two groups (post intervention). Glutathione peroxidase (p = 0.001), superoxide dismutase (p = 0.0001), catalase (p= 0.0369), melondialdehyde (p= 0.007), Vitamin A, Vitamin C, Vitamin E (p = 0.0001), zinc and copper (p = 0.0001). The clinical pregnancy outcomes were 22 (22%) versus 2 (2%); live births 18 (18%) versus 2 (2%) and menstrual regularisation 48 (48%) versus 46 (46%) in the intervention and control groups respectively.Conclusions: Antioxidant supplementation in this study significantly affected pregnancy rate in patients with PCOS. Larger studies are suggested to revisit the conclusion of the Cochrane review that antioxidants supplementation had no significant role in female infertility.


2001 ◽  
Vol 280 (5) ◽  
pp. H2271-H2280 ◽  
Author(s):  
M. Brennan Harris ◽  
Joseph W. Starnes

This study determined the role of body temperature during chronic exercise on myocardial stress proteins and antioxidant enzymes as well as functional recovery after an ischemic insult. Male Sprague-Dawley rats were exercised for 3, 6, or 9 wk in a 23°C room (3WK, 6WK, and 9WK, respectively) or in a 4–8°C environment with wetted fur (3WKC, 6WKC, and 9WKC, respectively). The colder room prevented elevations in core temperature. During weeks 3–9 the animals ran 5 days/wk up a 6% grade at 20 m/min for 60 min. Myocardial heat shock protein 70 (HSP 70) increased 12.3-fold ( P < 0.05) in 9WK versus sedentary (SED) rats but was unchanged in the cold-room runners. Compared with SED rats, αB-crystallin was 90% higher in 9WKC animals, HSP 90 was 50% higher in 3WKC and 6WKC animals, and catalase was 23% higher in 3WK animals ( P < 0.05 for all). Cytosolic superoxide dismutase increased and mitochondrial SOD decreased ( P < 0.05) in 3WK and 6WK rats compared with 3WKC and 6WKC rats. Antioxidant enzymes returned to SED values in all runners by 9 wk. No differences were observed among any of the groups for glucose-regulated protein 75, heme oxygenase-1, or glutathione peroxidase. Mechanical recovery of isolated working hearts after 22.5 min of global ischemia was enhanced in 9WK ( P < 0.05) but not in 9WKC rats. We conclude that exercise training results in dynamic changes in cardioprotective proteins over time which are influenced by core temperature. In addition, cardioprotection resulting from chronic exercise appears to be due to increased HSP 70.


Sign in / Sign up

Export Citation Format

Share Document