Influence of High-Intensity Training on Power Production in High School Field Hockey Players

2016 ◽  
Vol 48 ◽  
pp. 865
Author(s):  
T. Brock Symons ◽  
Alexandra H. Roberts ◽  
Amy J. Walden ◽  
Kathleen A. Carter
2022 ◽  
Vol 12 (2) ◽  
pp. 751
Author(s):  
Álex Cebrián-Ponce ◽  
Manuel V. Garnacho-Castaño ◽  
Mercè Castellano-Fàbrega ◽  
Jorge Castizo-Olier ◽  
Marta Carrasco-Marginet ◽  
...  

This study aimed to analyze anthropometric and whole-body/muscle-localized bioelectrical impedance vector analysis (BIVA) adaptations and their relation to creatine kinase (CK) as a biomarker of muscle damage in a group of seven male players in the maximum category of professional rink hockey. There were three checkpoint assessments in relation to a high-intensity training session: pre-session (PRE), post-session (POST), and 24 h-post-session (POST24H). The resistance, reactance, and impedance module were adjusted by height (R/h, Xc/h, and Z/h, respectively). The Wilcoxon signed-rank test was used to compare the data at baseline and follow-up, while Spearman correlation was used to explore the relationship between CK and the rest of the parameters. The results registered a decrease in body mass at POST (p = 0.03) and a reestablishment at POST24H (p = 0.02). Whole-body BIVA registered a significant increase in R/h between PRE–to–POST (p = 0.02) and returned to baseline values at POST24H (p = 0.02), which was expected since this parameter is related to hydration processes. Muscle-localized BIVA in the rectus femoris muscle showed an increase in both Xc/h and phase angle in POST (p = 0.04 and p = 0.03, respectively) and a decrease in Xc/h at POST24H (p = 0.02). CK correlated with R/h in the rectus femoris at all the checkpoints (PRE–to–POST: r = 0.75, p = 0.05; PRE–to–POST24H: r = 0.81, p = 0.03; POST–to–POST24H: r = 0.82, p = 0.02). Our results indicate that BIVA is a sensitive methodology to assess general and muscle-localized hydration induced by a high-intensity training session in rink hockey players. A correlation between BIVA and CK was also reported.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eugenia Murawska-Ciałowicz ◽  
Gilmara Gomes de Assis ◽  
Filipe Manuel Clemente ◽  
Yuri Feito ◽  
Petr Stastny ◽  
...  

AbstractThis study examined the effects of a nine-week intervention of four different high-intensity training modalities [high-intensity functional training (HIFT), high-intensity interval training (HIIT), high-intensity power training (HIPT), and high-intensity endurance training (HIET)] on the resting concentration of brain-derived neurotropic factor (BDNF). In addition, we evaluated the BDNF responses to Graded Exercise Test (GXT) and Wingate Anaerobic Test (WAnT) in men. Thirty-five healthy individuals with body mass index 25.55 ± 2.35 kg/m2 voluntarily participated in this study and were randomly assigned into four training groups. During nine-weeks they completed three exercise sessions per week for one-hour. BDNF was analyzed before and after a GXT and WAnT in two stages: (stage 0—before training and stage 9—after nine weeks of training). At stage 0, an increase in BDNF concentration was observed in HIFT (33%; p < 0.05), HIPT (36%; p < 0.05) and HIIT (38%; p < 0.05) after GXT. Even though HIET showed an increase in BDNF (10%) this was not statistically significant (p > 0.05). At stage 9, higher BDNF levels after GXT were seen only for the HIFT (30%; p < 0.05) and HIIT (18%; p < 0.05) groups. Reduction in BDNF levels were noted after the WAnT in stage 0 for HIFT (− 47%; p < 0.01), HIPT (− 49%; p < 0.001), HIET (− 18%; p < 0.05)], with no changes in the HIIT group (− 2%). At stage 9, BDNF was also reduced after WAnT, although these changes were lower compared to stage 0. The reduced level of BDNF was noted in the HIFT (− 28%; p < 0.05), and HIPT (− 19%;p < 0.05) groups. Additionally, all groups saw an improvement in VO2max (8%; p < 0.001), while BDNF was also correlated with lactate and minute ventilation and selected WAnT parameters. Our research has shown that resting values of BDNF after nine weeks of different forms of high-intensity training (HIT) have not changed or were reduced. Resting BDNF measured at 3th (before GXT at stage 9) and 6th day after long lasting HITs (before WAnT at stage 9) did not differed (before GXT), but in comparison to the resting value before WAnT at the baseline state, was lower in three groups. It appears that BDNF levels after one bout of exercise is depended on duration time, intensity and type of test/exercise.


2016 ◽  
Vol 44 (3) ◽  
pp. 208-216 ◽  
Author(s):  
Mehdi Kargarfard ◽  
Eddie T. C. Lam ◽  
Ardalan Shariat ◽  
Mahmoud Asle Mohammadi ◽  
Saleh Afrasiabi ◽  
...  

2000 ◽  
Vol 279 (1) ◽  
pp. R152-R160 ◽  
Author(s):  
Niels Ørtenblad ◽  
Per K. Lunde ◽  
Klaus Levin ◽  
Jesper L. Andersen ◽  
Preben K. Pedersen

To evaluate the effect of intermittent sprint training on sarcoplasmic reticulum (SR) function, nine young men performed a 5 wk high-intensity intermittent bicycle training, and six served as controls. SR function was evaluated from resting vastus lateralis muscle biopsies, before and after the training period. Intermittent sprint performance (ten 8-s all-out periods alternating with 32-s recovery) was enhanced 12% ( P < 0.01) after training. The 5-wk sprint training induced a significantly higher ( P < 0.05) peak rate of AgNO3-stimulated Ca2+ release from 709 (range 560–877; before) to 774 (596–977) arbitrary units Ca2+ ⋅ g protein− 1 ⋅ min− 1(after). The relative SR density of functional ryanodine receptors (RyR) remained unchanged after training; there was, however, a 48% ( P < 0.05) increase in total number of RyR. No significant differences in Ca2+ uptake rate and Ca2+-ATPase capacity were observed following the training, despite that the relative density of Ca2+-ATPase isoforms SERCA1 and SERCA2 had increased 41% and 55%, respectively ( P < 0.05). These data suggest that high-intensity training induces an enhanced peak SR Ca2+ release, due to an enhanced total volume of SR, whereas SR Ca2+ sequestration function is not altered.


2017 ◽  
Vol 216 (4) ◽  
pp. 384.e1-384.e11 ◽  
Author(s):  
Camilla M. Mandrup ◽  
Jon Egelund ◽  
Michael Nyberg ◽  
Martina H. Lundberg Slingsby ◽  
Caroline B. Andersen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document