scholarly journals Negative Relationship Between Morphine Analgesia and P-Glycoprotein Expression Levels in the Brain

2007 ◽  
Vol 105 (4) ◽  
pp. 353-360 ◽  
Author(s):  
Wakako Hamabe ◽  
Takehiko Maeda ◽  
Norikazu Kiguchi ◽  
Chizuko Yamamoto ◽  
Shogo Tokuyama ◽  
...  
2000 ◽  
Vol 92 (5) ◽  
pp. 1392-1399 ◽  
Author(s):  
Susan J. Thompson ◽  
Kari Koszdin ◽  
Christopher M. Bernards

Background P-glycoprotein is a transmembrane protein expressed by multiple mammalian cell types, including the endothelial cells that comprise the blood-brain-barrier. P-glycoprotein functions to actively pump a diverse array of xenobiotics out of the cells in which it is expressed. The purpose of this study was to determine if P-glycoprotein alters the analgesic efficacy of clinically useful opioids. Methods Using a standard hot-plate method, the magnitude and duration of analgesia from morphine, morphine-6-glucuronide, methadone, meperidine, and fentanyl were assessed in wild-type Friends virus B (FVB) mice and in FVB mice lacking P-glycoprotein [mdr1a/b(-/-)]. Analgesia was expressed as the percent maximal possible effect (%MPE) over time, and these data were used to calculate the area under the analgesia versus time curves (AUC) for all opioids studied. In addition, the effect of a P-glycoprotein inhibitor (cyclosporine, 100 mg/kg) on morphine analgesia in both wild-type and mdr knockout mice was also determined. Results Morphine induced greater analgesia in knockout mice compared with wild-type mice (AUC 6,450 %MPE min vs. 1,610 %MPE min at 3 mg/kg), and morphine brain concentrations were greater in knockout mice. Analgesia was also greater in knockout mice treated with methadone and fentanyl but not meperidine or morphine-6-glucuronide. Cyclosporine pretreatment markedly increased morphine analgesia in wild-type mice but had no effect in knockout mice. Conclusions These results suggest that P-glycoprotein acts to limit the entry of some opiates into the brain and that acute administration of P-glycoprotein inhibitors can increase the sensitivity to these opiates.


2009 ◽  
Vol 29 (6) ◽  
pp. 1079-1083 ◽  
Author(s):  
Leon M Tai ◽  
A Jane Loughlin ◽  
David K Male ◽  
Ignacio A Romero

The clearance of amyloid beta (Aβ) from the brain represents a novel therapeutic target for Alzheimer's disease. Conflicting data exist regarding the contribution of adenosine triphosphatebinding cassette transporters to the clearance of Aβ through the blood-brain barrier. Therefore, we investigated whether Aβ could be a substrate for P-glycoprotein (P-gp) and/or for breast cancer resistance protein (BCRP) using a human brain endothelial cell line, hCMEC/D3. Inhibition of P-gp and BCRP increased apical-to-basolateral, but not basolateral-to-apical, permeability of hCMEC/D3 cells to 125l Aβ 1–40. Our in vitro data suggest that P-gp and BCRP might act to prevent the blood-borne Aβ 1–40 from entering the brain.


1997 ◽  
Vol 25 (6) ◽  
pp. 407-412
Author(s):  
S. Kawamoto ◽  
T. Deguchi ◽  
S. Nezasa ◽  
S. Yamada ◽  
M. Okano ◽  
...  

2021 ◽  
Author(s):  
Robert W. Robey ◽  
Andrea N. Robinson ◽  
Fatima Ali-Rahmani ◽  
Lyn M. Huff ◽  
Sabrina Lusvarghi ◽  
...  

ABSTRACTGiven its similarities with mammalian systems, the zebrafish has emerged as a potential model to study the blood-brain barrier (BBB). Capillary endothelial cells at the human BBB express high levels of P-glycoprotein (P-gp, encoded by the ABCB1 gene) and ABCG2 (encoded by the ABCG2 gene). However, little information has been available about ATP-binding cassette transporters expressed at the zebrafish BBB. In this study, we focus on the characterization and tissue localization of two genes that are similar to human ABCB1, zebrafish abcb4 and abcb5. Cytotoxicity assays with stably-transfected cell lines revealed that zebrafish Abcb5 cannot efficiently transport the substrates doxorubicin and mitoxantrone compared to human P-gp and zebrafish Abcb4. Additionally, zebrafish Abcb5 did not transport the fluorescent probes BODIPY-ethylenediamine or LDS 751, while they were readily transported by Abcb4 and P-gp. A high-throughput screen conducted with 90 human P-gp substrates confirmed that zebrafish Abcb4 has overlapping substrate specificity with P-gp. Basal ATPase activity of zebrafish Abcb4 and Abcb5 was comparable to that of human P-gp. In the brain vasculature, RNAscope probes to detect abcb4 colocalized with staining by the P-gp antibody C219, while abcb5 was not detected. Zebrafish abcb4 also colocalized with claudin-5 expression in brain endothelial cells. Abcb4 and Abcb5 had different tissue localizations in multiple zebrafish tissues, consistent with different functions. The data suggest that zebrafish Abcb4 most closely phenocopies P-gp and that the zebrafish may be a viable model to study the role of the multidrug transporter P-gp at the BBB.


2014 ◽  
Vol 127 (5) ◽  
pp. 699-711 ◽  
Author(s):  
Gijs Kooij ◽  
Jeffrey Kroon ◽  
Debayon Paul ◽  
Arie Reijerkerk ◽  
Dirk Geerts ◽  
...  

Endocrinology ◽  
2012 ◽  
Vol 153 (3) ◽  
pp. 1528-1537 ◽  
Author(s):  
Steffen Mayerl ◽  
Theo J. Visser ◽  
Veerle M. Darras ◽  
Sigrun Horn ◽  
Heike Heuer

Organic anion-transporting polypeptide 1c1 (Oatp1c1) (also known as Slco1c1 and Oatp14) belongs to the family of Oatp and has been shown to facilitate the transport of T4. In the rodent brain, Oatp1c1 is highly enriched in capillary endothelial cells and choroid plexus structures where it may mediate the entry of T4 into the central nervous system. Here, we describe the generation and first analysis of Oatp1c1-deficient mice. Oatp1c1 knockout (KO) mice were born with the expected frequency, were not growth retarded, and developed without any overt neurological abnormalities. Serum T3 and T4 concentrations as well as renal and hepatic deiodinase type 1 expression levels were indistinguishable between Oatp1c1 KO mice and control animals. Hypothalamic TRH and pituitary TSH mRNA levels were not affected, but brain T4 and T3 content was decreased in Oatp1c1-deficient animals. Moreover, increased type 2 and decreased type 3 deiodinase activities indicate a mild hypothyroid situation in the brain of Oatp1c1 KO mice. Consequently, mRNA expression levels of gene products positively regulated by T3 in the brain were down-regulated. This central nervous system-specific hypothyroidism is presumably caused by an impaired passage of T4 across the blood-brain barrier and indicates a unique function of Oatp1c1 in facilitating T4 transport despite the presence of other thyroid hormone transporters such as Mct8.


2020 ◽  
Vol 142 ◽  
pp. 105122
Author(s):  
Jean-Marie Nicolas ◽  
Hugues Chanteux ◽  
Johan Nicolaï ◽  
Frédéric Brouta ◽  
Delphine Viot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document