Decompositions and Policy Consequences of an Extraordinary Decline in Air Pollution from Electricity Generation

2020 ◽  
Vol 12 (4) ◽  
pp. 244-274
Author(s):  
Stephen P. Holland ◽  
Erin T. Mansur ◽  
Nicholas Z. Muller ◽  
Andrew J. Yates

Using integrated assessment models, we calculate the economic value of the extraordinary decline in emissions from US power plants. Annual local and global air pollution damages fell from $245 to $133 billion over 2010–2017. Decomposition shows changes in emission rates and generation shares among coal and gas plants account for more of this decline than changes in renewable generation, electricity consumption, and damage valuations. Econometrically estimated marginal damages declined in the East from 8.6 to 6 cents per kWh. Marginal damages increased slightly in the West and Texas. These estimates indicate electric vehicles are now cleaner on average than gasoline vehicles. (JEL H23, L94, Q53, Q58)

2013 ◽  
Author(s):  
John Semmens ◽  
Bert Bras ◽  
Tina Guldberg

In this paper, we investigate and compare the amounts and impacts of water consumption due to manufacturing processes versus the water consumption due to the electricity used in those manufacturing processes. As is shown using automotive manufacturing as a case study, the “indirect” water consumption in manufacturing due to electricity generation is significant. Reduction of electricity consumption, in particular from thermo-electric power plants, can lead to substantial water consumption reductions, and thus win-win situations. We also show the amounts of variability that occur dependent on how water consumption of hydro-electric power generation is calculated. In terms of an automotive life-cycle, the amount of water consumed in the production of gasoline dominates the life-cycle, but is itself subject to significant variations dependent on the source of the petroleum used.


Author(s):  
Hiroshi Honda

The global human capitals (GHCs) are sometimes meant in Japan to be those that can produce higher (economic) value than ordinary human resources in the global arena. For discussion purposes, they are grouped into specialists and generalists in a relative sense, and further into several categories of professions, including global engineers in charge of power plants (or global power engineer), in the current paper. Issues of raising GHCs from the East, such as various gaps and barriers typically seen in raising them from Japan, are discussed and compared with those typically raised in the West. It is shown that personal language/knowledge structures, which are formed through education of one’s infancy to entire life, and relevant skills are key factors in raising various GHCs. Further, types of Japanese universities and students are classified into several categories, for which educational issues are addressed and summarized for betterment of the education for the subject purposes.


2021 ◽  
Vol 23 (1) ◽  
pp. 1-6
Author(s):  
Iva Batić ◽  
◽  
Željko Đurišić ◽  
Miroljub Babić

One of the possible directions of decarbonisation and electrification of freight and passenger transport is the use of fuel cells with hydrogen as a fuel. Considering that the use of biomass for electricity generation is largely uncompetitive compared to wind and solar power plants, its use for hydrogen production is one of the possible directions of development of this renewable energy source. In this paper, technologies for hydrogen production from biodiesel were analyzed. An analysis of the structure and total costs of hydrogen production from biodiesel was performed, as well as the energy balance of this process. The conditions of using hydrogen to drive fuel cells in electric vehicles were considered. The efficiency of the energy cycle analysis was performed: biodiesel - hydrogen - electricity - mechanical energy to drive electric vehicles. As a final result, an estimation of the costs of production of kWh of electricity from biodiesel and a comparative analysis with a vehicle powered by a diesel engine and an electric motor powered by batteries was performed.


2019 ◽  
Vol 2 (3) ◽  
pp. 141-151
Author(s):  
O. E. Gnezdova ◽  
E. S. Chugunkova

Introduction: greenhouses need microclimate control systems to grow agricultural crops. The method of carbon dioxide injection, which is currently used by agricultural companies, causes particular problems. Co-generation power plants may boost the greenhouse efficiency, as they are capable of producing electric energy, heat and cold, as well as carbon dioxide designated for greenhouse plants.Methods: the co-authors provide their estimates of the future gas/electricity rates growth in the short term; they have made a breakdown of the costs of greenhouse products, and they have also compiled the diagrams describing electricity consumption in case of traditional and non-traditional patterns of power supply; they also provide a power distribution pattern typical for greenhouse businesses, as well as the structure and the principle of operation of a co-generation unit used by a greenhouse facility.Results and discussion: the co-authors highlight the strengths of co-generation units used by greenhouse facilities. They have also identified the biological features of carbon dioxide generation and consumption, and they have listed the consequences of using carbon dioxide to enrich vegetable crops.Conclusion: the co-authors have formulated the expediency of using co-generation power plants as part of power generation facilities that serve greenhouses.


Author(s):  
Harshkumar Patel ◽  
Yogesh Patel

Now-a-days energy planners are aiming to increase the use of renewable energy sources and nuclear to meet the electricity generation. But till now coal-based power plants are the major source of electricity generation. Disadvantages of coal-based thermal power plants is disposal problem of fly ash and pond ash. It was earlier considered as a total waste and environmental hazard thus its use was limited, but now its useful properties have been known as raw material for various application in construction field. Fly ash from the thermal plants is available in large quantities in fine and coarse form. Fine fly ash is used in construction industry in some amount and coarse fly ash is subsequently disposed over land in slurry forms. In India around 180 MT fly is produced and only around 45% of that is being utilized in different sectors. Balance fly ash is being disposed over land. It needs one acre of land for ash disposal to produce 1MW electricity from coal. Fly ash and pond ash utilization helps to reduce the consumption of natural resources. The fly ash became available in coal based thermal power station in the year 1930 in USA. For its gainful utilization, scientist started research activities and in the year 1937, R.E. Davis and his associates at university of California published research details on use of fly ash in cement concrete. This research had laid foundation for its specification, testing & usages. This study reports the potential use of pond-ash and fly-ash as cement in concrete mixes. In this present study of concrete produced using fly ash, pond ash and OPC 53 grade will be carried. An attempt will be made to investigate characteristics of OPC concrete with combined fly ash and pond ash mixed concrete for Compressive Strength test, Split Tensile Strength test, Flexural Strength test and Durability tests. This paper deals with the review of literature for fly-ash and pond-ash as partial replacement of cement in concrete.


2021 ◽  
Vol 11 (13) ◽  
pp. 6005
Author(s):  
Daniel Villanueva ◽  
Moisés Cordeiro-Costas ◽  
Andrés E. Feijóo-Lorenzo ◽  
Antonio Fernández-Otero ◽  
Edelmiro Miguez-García

The aim of this paper is to shed light on the question regarding whether the integration of an electric battery as a part of a domestic installation may increase its energy efficiency in comparison with a conventional case. When a battery is included in such an installation, two types of electrical conversion must be considered, i.e., AC/DC and DC/AC, and hence the corresponding losses due to these converters must not be forgotten when performing the analysis. The efficiency of the whole system can be increased if one of the mentioned converters is avoided or simply when its dimensioning is reduced. Possible ways to achieve this goal can be: to use electric vehicles as DC suppliers, the use of as many DC home devices as possible, and LED lighting or charging devices based on renewables. With all this in mind, several scenarios are proposed here in order to have a look at all possibilities concerning AC and DC powering. With the aim of checking these scenarios using real data, a case study is analyzed by operating with electricity consumption mean values.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4665
Author(s):  
Duarte Kazacos Winter ◽  
Rahul Khatri ◽  
Michael Schmidt

The increasing number of prosumers and the accompanying greater use of decentralised energy resources (DERs) bring new opportunities and challenges for the traditional electricity systems and the electricity markets. Microgrids, virtual power plants (VPPs), peer-to-peer (P2P) trading and federated power plants (FPPs) propose different schemes for prosumer coordination and have the potential of becoming the new paradigm of electricity market and power system operation. This paper proposes a P2P trading scheme for energy communities that negotiates power flows between participating prosumers with insufficient renewable power supply and prosumers with surplus supply in such a way that the community welfare is maximized while avoiding critical grid conditions. For this purpose, the proposed scheme is based on an Optimal Power Flow (OPF) problem with a Multi-Bilateral Economic Dispatch (MBED) formulation as an objective function. The solution is realized in a fully decentralized manner on the basis of the Relaxed Consensus + Innovations (RCI) algorithm. Network security is ensured by a tariff-based system organized by a network agent that makes use of product differentiation capabilities of the RCI algorithm. It is found that the proposed mechanism accurately finds and prevents hazardous network operations, such as over-voltage in grid buses, while successfully providing economic value to prosumers’ renewable generation within the scope of a P2P, free market.


1992 ◽  
Vol 3 (2) ◽  
pp. 148-160 ◽  
Author(s):  
Armistead Russell ◽  
Alan Krupnick ◽  
Hadi Dowlatabadi

2021 ◽  
Author(s):  
Laura Ehrnsperger ◽  
Otto Klemm

<p>Ambient air pollution caused by fine particulate matter (PM) and trace gases is a pressing topic as it affects the vast majority of the world's population, especially in densely populated urban environments. The main sources of ambient air pollution in cities are road traffic, industries and domestic heating. Alongside nitrogen oxides (NO<sub>x</sub>) and PM, ammonia (NH<sub>3</sub>) is also a relevant air pollutant due to its role as a precursor of particulate ammonium (NH<sub>4</sub><sup>+</sup>). To examine the temporal patterns and sources of air pollutants, this study used fast-response air quality measurements in combination with highly resolved traffic information in Münster, NW Germany. The temporal dynamics of NO<sub>x</sub> and the particle number concentration (PN<sub>10</sub>) were similar to the diurnal and weekly courses of the traffic density. On very short timescales, the real-world peak ratios of NO<sub>x</sub> and PM ≤ 10 µm diameter (PM<sub>10</sub>) exceeded the predicted pollutant emission ratios of the Handbook for Emission Factors for Road Transport (HBEFA) by a factor of 6.4 and 2.0, respectively. A relative importance model revealed that light-duty vehicles (LDVs) are the major relative contributor to PN<sub>10</sub> (38 %) despite their low abundance (4 %) in the local vehicle fleet.  Diesel and gasoline vehicles contributed similarly to the concentrations of PM<sub>10</sub> and PN<sub>10</sub>, while the impact of gasoline vehicles on the PM<sub>1</sub> concentration was greater than that of diesel vehicles by a factor of 4.4. The most recent emission class Euro 6 had the highest influence on PM<sub>10</sub>. Meteorological parameters explained a large portion of the variations in PM<sub>10</sub> and PM<sub>1</sub>, while meteorology had only a minor influence on PN<sub>10</sub>. We also studied the short-term temporal dynamics of urban NH<sub>3 </sub>concentrations, the role of road traffic and agriculture as NH<sub>3</sub> sources and the importance of ammonia for secondary particle formation (SPF). The NH<sub>3</sub> mixing ratio was rather high (mean: 17 ppb) compared to other urban areas and showed distinct diurnal maxima around 10 a.m. and 9 p.m. The main source for ammonia in Münster was agriculture, but road traffic also contributed through local emissions from vehicle catalysts. NH<sub>3</sub> from surrounding agricultural areas accumulated in the nocturnal boundary layer and contributed to SPF in the city center. The size-resolved chemical composition of inorganic ions in PM<sub>10</sub> was dominated by NH<sub>4</sub><sup>+</sup> (8.7 µg m<sup>-3</sup>), followed by NO<sub>3</sub><sup>-</sup> (3.9 µg m<sup>-3</sup>), SO<sub>4</sub><sup>2-</sup> (1.6 µg m<sup>-3</sup>) and Cl<sup>-</sup> (1.3 µg m<sup>-3</sup>). Particles in the accumulation range (diameter: 0.1 – 1 µm) showed the highest inorganic ion concentrations. The ammonium neutralization index J (111 %) indicated an excess of NH<sub>4</sub><sup>+</sup> leading to mostly alkaline PM. High ammonia emissions from surrounding agricultural areas combined with large amounts of NO<sub>x</sub> from road traffic play a crucial role for SPF in Münster. Our results further indicate that replacing fossil-fuelled LDVs with electrical vehicles would greatly reduce the PN<sub>10</sub> concentrations at this urban site.</p>


Sign in / Sign up

Export Citation Format

Share Document