Remote care nearby

2010 ◽  
Vol 16 (6) ◽  
pp. 294-301 ◽  
Author(s):  
Miriam MR Vollenbroek-Hutten ◽  
Hermie J Hermens

A telemedicine application has a better chance of being accepted if the users can easily handle it and if the application fulfils the clinical needs of both patients and professionals. This requires a methodology for development in which three key matters need to be dealt with: (1) clinical content; (2) design; and (3) outcome. Concerning the clinical content, telemedicine services for patients with chronic disorders that aim to increase their level of functioning need to monitor aspects of the patient's functioning and provide adequate feedback about this. Promising parameters of functioning are related to general physical activity and muscle activation patterns. Providing adequate feedback requires choices about the content of the information, the modality of the feedback and its timing. Unfortunately, research into effective feedback strategies is still in its infancy. Concerning the design it appears that the different stakeholders involved speak different languages, that there is a lack of knowledge about aspects related to acceptance and a lack of good methods to define user requirements. Scenario-based requirements analysis is a promising technique to overcome these barriers. Concerning the outcome, evaluation of telemedicine services in everyday clinical practice has been mainly directed at measurement of technical performance and user satisfaction. Large scale clinical evaluation studies with multiple end points are needed. This development methodology with its three aspects was used for a myofeedback-based teletreatment service. This showed that telemedicine applications can be developed that have the potential to make health care more effective, efficient and accessible.

2020 ◽  
Author(s):  
Amit Benady ◽  
Sean Zadik ◽  
Oran Ben-Gal ◽  
Desiderio Cano-Porras ◽  
Atalia Wenkert ◽  
...  

AbstractWhile walking, our locomotion is affected by and adapts to the environment based on vision-based and body-based (vestibular and proprioception) cues, all contributing to an “Internal Model of Gravity”. During surface inclination transitions, we modulate gait to counteract gravitational forces by braking during downhill walking to avoid uncontrolled acceleration or by exerting effort to avoid deceleration while walking uphill. In this study, we investigated the role of vision in gait modulation during surface inclination transitions by using an immersive large-scale Virtual Reality (VR) system equipped with a self-paced treadmill and projected visual scenes that allowed us to modulate physical-visual inclinations congruence parametrically. Gait speed and leg muscle electromyography (EMG) were measured in 12 healthy young adults. In addition, the magnitude of subjective visual misperception of verticality was measured by the rod and frame test. During virtual (non-veridical) inclination transitions, vision modulated gait speed after transitions by (i) slowing down to counteract the excepted gravitational ‘boost’ in virtual downhill inclinations and by (ii) speeding up to counteract the expected gravity resistance in virtual uphill inclinations. These gait speed modulations were reflected in muscle activation intensity changes and associated with subjective visual verticality misperception. However, temporal patterns of muscle activation, which are significantly affected by real gravitational inclination transitions, were not affected by virtual (visual) inclination transitions. Our results delineate the contribution of vision to functional locomotion on uneven surfaces and may lead to enhanced rehabilitation strategies for neurological disorders affecting movement.Significance statementA crucial component of successful locomotion is maintaining balance and speed while walking on uneven surfaces. In order to reach successful locomotion, an individual must utilize multisensory integration of visual, gravitational, and proprioception cues. The contribution of vision to this process is still unclear, thus we used a fully immersive virtual reality treadmill setup allowing us to manipulate visual (virtual) and gravitational (real) surface inclinations independently during locomotion of healthy adults. While vision modulated gait speed for a short period after inclination transitions and this was predictive of individual’s visual dependency, muscle activation patterns were only affected by gravitational surface inclinations, not by vision. Understanding the vision’s contribution to successful locomotion may lead to improved rehabilitation for movement disorders.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Stephen J. Preece ◽  
Nathan Brookes ◽  
Anita E. Williams ◽  
Richard K. Jones ◽  
Chelsea Starbuck ◽  
...  

Abstract Background Exercise-based approaches have been a cornerstone of physiotherapy management of knee osteoarthritis for many years. However, clinical effects are considered small to modest and the need for continued adherence identified as a barrier to clinical efficacy. While exercise-based approaches focus on muscle strengthening, biomechanical research has identified that people with knee osteoarthritis over activate their muscles during functional tasks. Therefore, we aimed to create a new behavioural intervention, which integrated psychologically informed practice with biofeedback training to reduce muscle overactivity, and which was suitable for delivery by a physiotherapist. Methods Through literature review, we created a framework linking theory from pain science with emerging biomechanical concepts related to overactivity of the knee muscles. Using recognised behaviour change theory, we then mapped a set of intervention components which were iteratively developed through ongoing testing and consultation with patients and physiotherapists. Results The underlying framework incorporated ideas related to central sensitisation, motor responses to pain and also focused on the idea that increased knee muscle overactivity could result from postural compensation. Building on these ideas, we created an intervention with five components: making sense of pain, general relaxation, postural deconstruction, responding differently to pain and functional muscle retraining. The intervention incorporated a range of animated instructional videos to communicate concepts related to pain and biomechanical theory and also used EMG biofeedback to facilitate visualization of muscle patterns. User feedback was positive with patients describing the intervention as enabling them to “create a new normal” and to be “in control of their own treatment.” Furthermore, large reductions in pain were observed from 11 patients who received a prototype version of the intervention. Conclusion We have created a new intervention for knee osteoarthritis, designed to empower individuals with capability and motivation to change muscle activation patterns and beliefs associated with pain. We refer to this intervention as Cognitive Muscular Therapy. Preliminary feedback and clinical indications are positive, motivating future large-scale trials to understand potential efficacy. It is possible that this new approach could bring about improvements in the pain associated with knee osteoarthritis without the need for continued adherence to muscle strengthening programmes. Trial registration ISRCTN51913166 (Registered 24-02-2020, Retrospectively registered).


Author(s):  
Roland van den Tillaar ◽  
Eirik Lindset Kristiansen ◽  
Stian Larsen

This study compared the kinetics, barbell, and joint kinematics and muscle activation patterns between a one-repetition maximum (1-RM) Smith machine squat and isometric squats performed at 10 different heights from the lowest barbell height. The aim was to investigate if force output is lowest in the sticking region, indicating that this is a poor biomechanical region. Twelve resistance trained males (age: 22 ± 5 years, mass: 83.5 ± 39 kg, height: 1.81 ± 0.20 m) were tested. A repeated two-way analysis of variance showed that Force output decreased in the sticking region for the 1-RM trial, while for the isometric trials, force output was lowest between 0–15 cm from the lowest barbell height, data that support the sticking region is a poor biomechanical region. Almost all muscles showed higher activity at 1-RM compared with isometric attempts (p < 0.05). The quadriceps activity decreased, and the gluteus maximus and shank muscle activity increased with increasing height (p ≤ 0.024). Moreover, the vastus muscles decreased only for the 1-RM trial while remaining stable at the same positions in the isometric trials (p = 0.04), indicating that potentiation occurs. Our findings suggest that a co-contraction between the hip and knee extensors, together with potentiation from the vastus muscles during ascent, creates a poor biomechanical region for force output, and thereby the sticking region among recreationally resistance trained males during 1-RM Smith machine squats.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin Young Ko ◽  
Hayoung Kim ◽  
Joonyoung Jang ◽  
Jun Chang Lee ◽  
Ju Seok Ryu

AbstractAge-related weakness due to atrophy and fatty infiltration in oropharyngeal muscles may be related to dysphagia in older adults. However, little is known about changes in the oropharyngeal muscle activation pattern in older adults. This was a prospective and experimental study. Forty healthy participants (20 older [> 60 years] and 20 young [< 60 years] adults) were enrolled. Six channel surface electrodes were placed over the bilateral suprahyoid (SH), bilateral retrohyoid (RH), thyrohyoid (TH), and sternothyroid (StH) muscles. Electromyography signals were then recorded twice for each patient during swallowing of 2 cc of water, 5 cc of water, and 5 cc of a highly viscous fluid. Latency, duration, and peak amplitude were measured. The activation patterns were the same, in the order of SH, TH, and StH, in both groups. The muscle activation patterns were classified as type I and II; the type I pattern was characterized by a monophasic shape, and the type II comprised a pre-reflex phase and a main phase. The oropharyngeal muscles and SH muscles were found to develop a pre-reflex phase specifically with increasing volume and viscosity of the swallowed fluid. Type I showed a different response to the highly viscous fluid in the older group compared to that in the younger group. However, type II showed concordant changes in the groups. Therefore, healthy older people were found to compensate for swallowing with a pre-reflex phase of muscle activation in response to increased liquid volume and viscosity, to adjust for age-related muscle weakness.


The Knee ◽  
2021 ◽  
Vol 29 ◽  
pp. 500-509
Author(s):  
J.C. Schrijvers ◽  
D. Rutherford ◽  
R. Richards ◽  
J.C. van den Noort ◽  
M. van der Esch ◽  
...  

2021 ◽  
Vol 11 (4) ◽  
pp. 448
Author(s):  
Francesco Infarinato ◽  
Paola Romano ◽  
Michela Goffredo ◽  
Marco Ottaviani ◽  
Daniele Galafate ◽  
...  

Background: Overground Robot-Assisted Gait Training (o-RAGT) appears to be a promising stroke rehabilitation in terms of clinical outcomes. The literature on surface ElectroMyoGraphy (sEMG) assessment in o-RAGT is limited. This paper aimed to assess muscle activation patterns with sEMG in subjects subacute post stroke after training with o-RAGT and conventional therapy. Methods: An observational preliminary study was carried out with subjects subacute post stroke who received 15 sessions of o-RAGT (5 sessions/week; 60 min) in combination with conventional therapy. The subjects were assessed with both clinical and instrumental evaluations. Gait kinematics and sEMG data were acquired before (T1) and after (T2) the period of treatment (during ecological gait), and during the first session of o-RAGT (o-RAGT1). An eight-channel wireless sEMG device acquired in sEMG signals. Significant differences in sEMG outcomes were found in the BS of TA between T1 and T2. There were no other significant correlations between the sEMG outcomes and the clinical results between T1 and T2. Conclusions: There were significant functional gains in gait after complex intensive clinical rehabilitation with o-RAGT and conventional therapy. In addition, there was a significant increase in bilateral symmetry of the Tibialis Anterior muscles. At this stage of the signals from the tibialis anterior (TA), gastrocnemius medialis (GM), rectus femoris (RF), and biceps femoris caput longus (BF) muscles of each lower extremity. sEMG data processing extracted the Bilateral Symmetry (BS), the Co-Contraction (CC), and the Root Mean Square (RMS) coefficients. Results: Eight of 22 subjects in the subacute stage post stroke agreed to participate in this sEMG study. This subsample demonstrated a significant improvement in the motricity index of the affected lower limb and functional ambulation. The heterogeneity of the subjects’ characteristics and the small number of subjects was associated with high variability research, functional gait recovery was associated with minimal change in muscle activation patterns.


2020 ◽  
Vol 129 (4) ◽  
pp. 934-946
Author(s):  
Katherine Dooley ◽  
Suzanne J. Snodgrass ◽  
Peter Stanwell ◽  
Samantha Birse ◽  
Adrian Schultz ◽  
...  

An emerging method to measure muscle activation patterns is muscle functional magnetic resonance imaging (mfMRI), where preexercise and postexercise muscle metabolism differences indicate spatial muscle activation patterns. We evaluated studies employing mfMRI to determine activation patterns of lumbar or lower limb muscles following exercise in physically active adults. Electronic systematic searches were conducted until March 2020. All studies employing ≥1.5 Tesla MRI scanners to compare spatial muscle activation patterns at the level of or inferior to the first lumbar vertebra in healthy, active adults. Two authors independently assessed study eligibility before appraising methodological quality using a National Institutes of Health assessment tool. Because of heterogeneity, findings were synthesized without meta-analysis. Of the 1,946 studies identified, seven qualified for inclusion and pertained to hamstring ( n = 5), quadriceps ( n = 1) or extrinsic foot ( n = 1) muscles. All included studies controlled for internal validity, with one employing assessor blinding. MRI physics and differing research questions explain study methodology heterogeneity. Significant mfMRI findings were: following Nordic exercise, hamstrings with previous trauma (strain or surgical autograft harvest) demonstrated reduced activation compared with unharmed contralateral muscles, and asymptomatic individuals preferentially activated semitendinosus; greater biceps femoris long head to semitendinosus ratios reported following 45° hip extension over Nordic exercise; greater rectus femoris activation occurred in “flywheel” over barbell squats. mfMRI parameters differ on the basis of individual research questions. Individual muscles show greater activation following specific exercises, suggesting exercise specificity may be important for rehabilitation, although evidence is limited to single cohort studies comparing interlimb differences preexercise versus postexercise.


Sign in / Sign up

Export Citation Format

Share Document