scholarly journals Shortening the preparation time of the single prolonged breath-hold for radiotherapy sessions

Author(s):  
Michael John Parkes ◽  
Stuart Green ◽  
Jason Cashmore ◽  
Qamar Ghafoor ◽  
Thomas Clutton-Brock

Objective: Single prolonged breath-holds of >5 min can be obtained in cancer patients. Currently, however, the preparation time in each radiotherapy session is a practical limitation for clinical adoption of this new technique. Here, we show by how much our original preparation time can be shortened without unduly compromising breath-hold duration. Methods: 44 healthy subjects performed single prolonged breath-holds from 60% O2 and mechanically induced hypocapnia. We tested the effect on breath-hold duration of shortening preparation time (the durations of acclimatization, hyperventilation and hypocapnia) by changing these durations and or ventilator settings. Results: Mean original breath-hold duration was 6.5 ± 0.2 (standard error) min. The total original preparation time (from connecting the facemask to the start of the breath-hold) was 26 ± 1 min. After shortening the hypocapnia duration from 16 to 5 min, mean breath-hold duration was still 6.1 ± 0.2 min (ns vs the original). After abolishing the acclimatization and shortening the hypocapnia to 1 min (a total preparation time now of 9 ± 1 min), a mean breath-hold duration of >5 min was still possible (now significantly shortened to 5.2 ± 0.6 min, p < 0.001). After shorter and more vigorous hyperventilation (lasting 2.7 ± 0.3 min) and shorter hypocapnia (lasting 43 ± 4 s), a mean breath-hold duration of >5 min (5.3 ± 0.2 min, p < 0.05) was still possible. Here, the final total preparation time was 3.5 ± 0.3 min. Conclusions: These improvements may facilitate adoption of the single prolonged breath-hold for a range of thoracic and abdominal radiotherapies especially involving hypofractionation. Advances in knowledge: Multiple short breath-holds improve radiotherapy for thoracic and abdominal cancers. Further improvement may occur by adopting the single prolonged breath-hold of >5 min. One limitation to clinical adoption is its long preparation time. We show here how to reduce the mean preparation time from 26 to 3.5 min without compromising breath-hold duration

2020 ◽  
Vol 2 (9) ◽  
pp. 1551-1562
Author(s):  
Leonie Zerweck ◽  
Till-Karsten Hauser ◽  
Constantin Roder ◽  
Uwe Klose

Abstract For the prognosis of stroke, patients with moyamoya disease (MMD) require the estimation of remaining cerebrovascular reactivity. For this purpose, CO2-triggered BOLD fMRI by use of short breath-hold periods seems to be a highly available alternative to nuclear medicine methods. Too long breath-hold periods are difficult to perform, too short breath-hold periods do not lead to sufficient BOLD signal changes. We aimed to investigate the required minimum breath-hold duration to detect distinct BOLD signals in the tissue of healthy subjects to find out how long the minimum breath-hold duration in clinical diagnostics of MMD should be. A prospective study was performed. Fourteen healthy subjects underwent fMRI during end-expiration breath-hold periods of different duration (3, 6, 9, and 12 s). Additionally, we compared the influence of paced and self-paced breathing altering the breath-hold periods. Data of a patient with MMD was evaluated to investigate whether the tested procedure is suitable for clinical use. Significant global BOLD signal increases were detected after breath-hold periods of 6, 9, and 12 s. The signals were significantly higher after breath-hold periods of 9 s than after 6 s, while not when the duration was extended from 9 to 12 s. Furthermore, we found additional BOLD signal changes before the expected signal increases, which could be avoided by paced respiratory instructions. This investigation indicates that end-expiration breath-hold period of at least 9 s might be used to measure the cerebrovascular reactivity. This time period resulted in distinct BOLD signal changes and could be performed easily.


2020 ◽  
Vol 11 ◽  
Author(s):  
Andreas Fahlman ◽  
Bruno Cozzi ◽  
Mercy Manley ◽  
Sandra Jabas ◽  
Marek Malik ◽  
...  

Previous reports suggested the existence of direct somatic motor control over heart rate (fH) responses during diving in some marine mammals, as the result of a cognitive and/or learning process rather than being a reflexive response. This would be beneficial for O2 storage management, but would also allow ventilation-perfusion matching for selective gas exchange, where O2 and CO2 can be exchanged with minimal exchange of N2. Such a mechanism explains how air breathing marine vertebrates avoid diving related gas bubble formation during repeated dives, and how stress could interrupt this mechanism and cause excessive N2 exchange. To investigate the conditioned response, we measured the fH-response before and during static breath-holds in three bottlenose dolphins (Tursiops truncatus) when shown a visual symbol to perform either a long (LONG) or short (SHORT) breath-hold, or during a spontaneous breath-hold without a symbol (NS). The average fH (ifHstart), and the rate of change in fH (difH/dt) during the first 20 s of the breath-hold differed between breath-hold types. In addition, the minimum instantaneous fH (ifHmin), and the average instantaneous fH during the last 10 s (ifHend) also differed between breath-hold types. The difH/dt was greater, and the ifHstart, ifHmin, and ifHend were lower during a LONG as compared with either a SHORT, or an NS breath-hold (P &lt; 0.05). Even though the NS breath-hold dives were longer in duration as compared with SHORT breath-hold dives, the difH/dt was greater and the ifHstart, ifHmin, and ifHend were lower during the latter (P &lt; 0.05). In addition, when the dolphin determined the breath-hold duration (NS), the fH was more variable within and between individuals and trials, suggesting a conditioned capacity to adjust the fH-response. These results suggest that dolphins have the capacity to selectively alter the fH-response during diving and provide evidence for significant cardiovascular plasticity in dolphins.


2020 ◽  
Vol 91 (7) ◽  
pp. 578-585
Author(s):  
Victory C. Madu ◽  
Heather Carnahan ◽  
Robert Brown ◽  
Kerri-Ann Ennis ◽  
Kaitlyn S. Tymko ◽  
...  

PURPOSE: This study was intended to determine the effect of skin cooling on breath-hold duration and predicted emergency air supply duration during immersion.METHODS: While wearing a helicopter transport suit with a dive mask, 12 subjects (29 ± 10 yr, 78 ± 14 kg, 177 ± 7 cm, 2 women) were studied in 8 and 20°C water. Subjects performed a maximum breath-hold, then breathed for 90 s (through a mouthpiece connected to room air) in five skin-exposure conditions. The first trial was out of water for Control (suit zipped, hood on, mask off). Four submersion conditions included exposure of the: Partial Face (hood and mask on); Face (hood on, mask off); Head (hood and mask off); and Whole Body (suit unzipped, hood and mask off).RESULTS: Decreasing temperature and increasing skin exposure reduced breath-hold time (to as low as 10 ± 4 s), generally increased minute ventilation (up to 40 ± 15 L · min−1), and decreased predicted endurance time (PET) of a 55-L helicopter underwater emergency breathing apparatus. In 8°C water, PET decreased from 2 min 39 s (Partial Face) to 1 min 11 s (Whole Body).CONCLUSION: The most significant factor increasing breath-hold and predicted survival time was zipping up the suit. Face masks and suit hoods increased thermal comfort. Therefore, wearing the suits zipped with hoods on and, if possible, donning the dive mask prior to crashing, may increase survivability. The results have important applications for the education and preparation of helicopter occupants. Thermal protective suits and dive masks should be provided.Madu VC, Carnahan H, Brown R, Ennis K-A, Tymko KS, Hurrie DMG, McDonald GK, Cornish SM, Giesbrecht GG. Skin cooling on breath-hold duration and predicted emergency air supply duration during immersion. Aerosp Med Hum Perform. 2020; 91(7):578–585.


1972 ◽  
Vol 71 (1) ◽  
pp. 24-36 ◽  
Author(s):  
Ariel Gordin ◽  
Pirkko Saarinen

ABSTRACT An account is given of a methodological study of the double-antibody radioimmunoassay of human TSH, using highly purified labelled human TSH as tracer. It was shown that conventional paper electrophoresis was not adequate for studying the purity of labelled human TSH. When polyvinylchloride (Pevikon®) electrophoresis was used, four subfractions could still be separated, even though, on paper electrophoresis, the material seemed to be homogeneous. Only two of the four Pevikon fractions were immunoreactive. Purification of labelled human TSH by Pevikon electrophoresis also improved the sensitivity of the assay. Specific activities of about 100 mCi/mg gave the highest initial binding capacity, produced least damage to the labelled hormone and showed the best stability of the tracer without influencing the sensitivity of the method. In different storage conditions, labelled human TSH was found to be most stable at −20°C and diluted 1/100. Only in pregnancy did the addition of HCG seem necessary. The mean TSH value in healthy subjects was 3.6 ± 1.4 μU/ml (mean±sd) with a range from 1.6 μU/ml to 8.8 μU/ml.


2019 ◽  
Vol 30 (5) ◽  
pp. 585-592 ◽  
Author(s):  
Nicola Montemurro ◽  
Paolo Perrini ◽  
Vittoriano Mangini ◽  
Massimo Galli ◽  
Andrea Papini

OBJECTIVEOdontoid process fractures are very common in both young and geriatric patients. The axial trabecular architecture of the dens appears to be crucial for physiological and biomechanical function of the C1–2 joint. The aim of this study is to demonstrate the presence of a Y-shaped trabecular structure of the dens on axial CT and to describe its anatomical and biomechanical implications.METHODSFifty-four C2 odontoid processes in healthy subjects were prospectively examined for the presence of a Y-shaped trabecular structure at the odontocentral synchondrosis level with a dental cone beam CT scan. Length, width, and axial area of the odontoid process were measured in all subjects. In addition, measurements of the one-third right anterior area of the Y-shaped structure were taken.RESULTSThe Y-shaped trabecular structure was found in 79.6% of cases. Length and width of the odontoid process were 13.5 ± 0.6 mm and 11.2 ± 0.9 mm, respectively. The mean area of the odontoid process at the odontocentral synchondrosis was 93.5 ± 4.3 mm2, whereas the mean one-third right anterior area of the odontoid process at the same level was 29.3 ± 2.5 mm2. The mean area of the odontoid process and its length and width were similar in men and women (p > 0.05). No significant difference was found in the mean area of the odontoid process in people older than 65 years (94 ± 4.2 mm2) compared to people younger than 65 years (93.3 ± 4.4 mm2; p > 0.05).CONCLUSIONSThe authors identified a new anatomical entity, named the Y-shaped trabecular structure of the odontoid process, on axial CT scans. This structure appears to be the result of bone transformation induced by the elevated dynamic loading at the C1–2 level. The presence of the Y-shaped structure provides new insights into biomechanical responses of C2 under physiological loading and traumatic conditions.


2018 ◽  
Vol 15 (1) ◽  
pp. 74-78
Author(s):  
Mohammadali Nazarinia ◽  
Asghar Zare ◽  
Mohammad javad Fallahi ◽  
Mesbah Shams

Background:Systemic sclerosis is a disorder of connective tissue with unknown cause, affecting the skin and internal organs, characterized by fibrotic changes.Objective:To determine the correlation between serum homocysteine level and interstitial lung involvement in systemic sclerosis. </P><P> Materials and Methods: In this case – control study, 59 patients who fulfilled the ACR/EULAR classification criteria for systemic sclerosis and were referred to Hafez Hospital of Shiraz, Iran, were included as the case group. Fifty nine healthy subjects were involved as the control group. Patients were divided into two groups based on interstitial lung involvement and two subtypes, diffuse and limited type. Serum homocysteine, vitamin B12, and folate levels compared between the controls, and cases groups.Results:Of 59 case and control group, 53 (%89.8) were female and the mean age did not differ in both groups (P=0.929). Thirty five (%59.3) patients had interstitial lung involvement and 38(%64.4) had diffuse cutaneous systemic sclerosis. The mean serum homocysteine level was 13.9±6.3 µmol/L in the case and 13.7±9.2 µmol/L in the control group (P=0.86). The mean serum homocysteine level did not differ between the patients with and without interstitial lung involvement (P=0.52). The patients with lung involvement was older than those without lung involvement (P=0.004). Lung disease was more common in diffuse type (P=0.014).Conclusion:In our study, serum homocysteine level did not differ between the patients and healthy subjects. Also, there was no correlation between serum homocysteine level and lung involvement, but lung involvement was more common in older patients and also diffuse subtype.


2021 ◽  
Vol 13 ◽  
pp. 251584142110304
Author(s):  
Emre Aydemir ◽  
Alper Halil Bayat ◽  
Burak Ören ◽  
Halil Ibrahim Atesoglu ◽  
Yasin Şakir Göker ◽  
...  

Purpose: The purpose of this study was to compare the retinal vascular caliber of COVID-19 patients with that of healthy subjects. Methods: This was a prospective case–control study. Forty-six patients who had COVID-19 were successfully treated, and 38 age- and gender-matched healthy subjects were enrolled in this study. Fundus photography was taken using fundus fluorescein angiography (FA; Visucam 500; Carl Zeiss Meditec, Jena, Germany). Retinal vascular caliber was analyzed with IVAN, a semi-automated retinal vascular analyzer (Nicole J. Ferrier, College of Engineering, Fundus Photography Reading Center, University of Wisconsin, Madison, WI, USA). Central retinal artery equivalent (CRAE), central retinal vein equivalent (CRVE), and artery–vein ratio (AVR) were compared between groups. Results: The mean age was 37.8 ± 9.5 years in the COVID-19 group ( n = 46) and 40 ± 8 years in the control group ( n = 38) ( p = 0.45). The mean CRAE was 181.56 ± 6.40 in the COVID-19 group and 171.29 ± 15.06 in the control group ( p = 0.006). The mean CRVE was 226.34 ± 23.83 in the COVID-19 group and 210.94 ± 22.22 in the control group ( p = 0.044). AVR was 0.81 ± 0.09 in the COVID-19 group and 0.82 ± 0.13 in the control group ( p = 0.712). Conclusion: Patients who had COVID-19 have vasodilation in the retinal vascular structure after recovery. As they may be at risk of retinal vascular disease, COVID-19 patients must be followed after recovery.


1981 ◽  
Vol 90 (1) ◽  
pp. 85-100
Author(s):  
CHARLES H. PAGE

Postural extensions of the abdomen of the crayfish, Procambarus clarkii, could be evoked by mechanical stimulation of a single thoracic leg. Movement of a single leg joint was sufficient to initiate an extension response. Vigorous abdominal extensions were initiated either by depression of the whole leg (WLD) or by flexion of the mero-carpal joint (MCF). Weaker extension responses were obtained by depression of the thoracic-coxal and coxo-basal joints. Similar stimulation of the chelipeds did not elicit an abdominal extension response. Single-frame analysis of motion pictures of crayfish responding to WLD or MCF stimulation of a 2nd thoracic leg showed that the responses evoked by the two different stimulus situations were nearly identical. They differed principally in the responses of the leg located contralateral to the stimulated leg. Movements of most of the cephalic, thoracic and abdominal appendages accompanied the abdominal extension response. Only the eyes remained stationary throughout the response. The mean values of the latencies for the initiation of appendage movement ranged from 125 to 204 ma; abdominal movement had a mean latency of about 220 ms. The abdominal extension reflex resulted from the activity of the tonic superficial extensor muscles. The deep phasic extensor muscles were silent during the response. The mean latencies for the initiation of superficial extensor muscle activity by WLD and MCF stimulation were 53·7 and 50·0 ms respectively.


Sign in / Sign up

Export Citation Format

Share Document