Physiological features of periodontal regeneration and approaches for periodontal tissue engineering utilizing periodontal ligament cells

2007 ◽  
Vol 103 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Bruno Braga Benatti ◽  
Karina Gonzales Silvério ◽  
Márcio Zaffalon Casati ◽  
Enílson Antônio Sallum ◽  
Francisco Humberto Nociti
2019 ◽  
Vol 98 (6) ◽  
pp. 673-681 ◽  
Author(s):  
C. Vaquette ◽  
S. Saifzadeh ◽  
A. Farag ◽  
D.W. Hutmacher ◽  
S. Ivanovski

This study reports on scaffold-based periodontal tissue engineering in a large preclinical animal model. A biphasic scaffold consisting of bone and periodontal ligament compartments manufactured by melt and solution electrospinning, respectively, was used for the delivery of in vitro matured cell sheets from 3 sources: gingival cells (GCs), bone marrow–derived mesenchymal stromal cells (Bm-MSCs), and periodontal ligament cells (PDLCs). The construct featured a 3-dimensional fibrous bone compartment with macroscopic pore size, while the periodontal compartment consisted of a flexible porous membrane for cell sheet delivery. The regenerative performance of the constructs was radiographically and histologically assessed in surgically created periodontal defects in sheep following 5 and 10 wk of healing. Histologic observation demonstrated that the constructs maintained their shape and volume throughout the entirety of the in vivo study and were well integrated with the surrounding tissue. There was also excellent tissue integration between the bone and periodontal ligament compartments as well as the tooth root interface, enabling the attachment of periodontal ligament fibers into newly formed cementum and bone. Bone coverage along the root surface increased between weeks 5 and 10 in the Bm-MSC and PDLC groups. At week 10, the micro–computed tomography results showed that the PDLC group had greater bone fill as compared with the empty scaffold, while the GC group had less bone than the 3 other groups (control, Bm-MSC, and PDLC). Periodontal regeneration, as measured by histologically verified new bone and cementum formation with obliquely inserted periodontal ligament fibers, increased between 5 and 10 wk for the empty, Bm-MSC, and PDLC groups, while the GC group was inferior to the Bm-MSC and PDLC groups at 10 wk. This study demonstrates that periodontal regeneration can be achieved via the utilization of a multiphasic construct, with Bm-MSCs and PDLCs obtaining superior results as compared with GC-derived cell sheets.


2020 ◽  
Vol 5 (5) ◽  
pp. 28-34
Author(s):  
Olena J. Kordiyak ◽  

Chronic periodontitis is a common dental disease, resulting in destruction of gingival tissue, periodontal ligament, cementum, alveolar bone and, consequently- teeth loss in the adult population. Experimental animal models have enabled the study of periodontal disease pathogenesis and are used to test new therapeutic approaches for treating the disease The purpose of this review study was to draw the evidence from animal models, required for future assessment of destructional and regenerative processes in periodontal tissues. Material and methods: a rat experimental periodontitis models of ligature, streptozotocin, and immune complexes induced periodontitis, periodontal defect, altered functional loading, stress exposures and surgically created chronic acid reflux esophagitis models. Histomorphomorphological/-metrical, immunohisto (-cyto)chemical and histopathological analysis, micro-computed tomography, scanning and transmission electron microscopy, polarizing light and confocal microscopy, spectrophotometry, radiographic and biomechanical analysis, descriptive histology and computer-assisted image analysis. Results and discussion. Scaling and root planing may not always be effective in preventing periodontal disease progression, and, moreover, with currently available therapies, full regeneration of lost periodontal tissues after periodontitis cannot be achieved. However, in 70.5% of the results of experimental studies reported, irrespective of the defect type and animal model used, beneficial outcome for periodontal regeneration after periodontal ligament stem cell implantation, including new bone, new cementum and new connective tissue formation, was recorded. Therefore, platelet-rich fibrin combined with rat periodontal ligament stem cells provides a useful instrument for periodontal tissue engineering. Conclusion. There is sufficient evidence from preclinical animal studies suggesting that periodontal tissue engineering would provide a valuable tool for periodontal regeneration. Further elaboration of the developed in preclinical studies experimental techniques should justify progress to clinical studies and subsequent medical application


2020 ◽  
Vol 10 (11) ◽  
pp. 1802-1807
Author(s):  
Haiying Wang ◽  
Yanmin Wu ◽  
Zhengyu Yao ◽  
Cong Wang

Tissue engineering technology provides a new method for periodontal regeneration. Finding or preparing a suitable scaffold is the key to periodontal tissue engineering. Here, we use nano-hydroxyapatite-modified collagen biomimetic material (nHAC) as the packaging material, and carry fibroblast growth factor (bFGF) for the regeneration and repair of periodontal tissue. Due to its low cytotoxicity and high biocompatibility, nHAC shows unique advantages in the construction of periodontal tissue scaffolds. The nHAC periodontal tissue scaffold material has a dense and porous three-dimensional network structure, has a high loading rate of bFGF, and can firmly lock human periodontal ligament cells (HPDLCs), which is easy for cell growth and attachment. In vivo experiments have shown that, in artificial animal periodontal tissue models, the nHAC-loaded bFGF periodontal scaffold covered by Geistlich Bio-Gide (GBG) membrane is better than the simple GBG membrane and the blank group, the nHAC/bFGF-GBG composite membrane It is beneficial to promote the growth of new alveolar bone and cement formation, and realize the regeneration of periodontal tissue.


Author(s):  
Lingjun Li ◽  
Yangheng Zhang ◽  
Min Wang ◽  
Jing Zhou ◽  
Qian Zhang ◽  
...  

Periodontitis is a chronic inflammatory disease with plaques as the initiating factor, which will induce the destruction of periodontal tissues. Numerous studies focused on how to obtain periodontal tissue regeneration in inflammatory environments. Previous studies have reported adenovirus-mediated human β-defensin 3 (hBD3) gene transfer could potentially enhance the osteogenic differentiation of human periodontal ligament cells (hPDLCs) and bone repair in periodontitis. Gold nanoparticles (AuNPs), the ideal inorganic nanomaterials in biomedicine applications, were proved to have synergetic effects with gene transfection. To further observe the potential promoting effects, AuNPs were added to the transfected cells. The results showed the positive effects of osteogenic differentiation while applying AuNPs into hPDLCs transfected by adenovirus encoding hBD3 gene. In vivo, after rat periodontal ligament cell (rPDLC) transplantation into SD rats with periodontitis, AuNPs combined hBD3 gene modification could also promote periodontal regeneration. The p38 mitogen-activated protein kinase (MAPK) pathway was demonstrated to potentially regulate both the in vitro and in vivo processes. In conclusion, AuNPs can promote the osteogenic differentiation of hBD3 gene-modified hPDLCs and periodontal regeneration via the p38 MAPK pathway.


2019 ◽  
Vol 20 (18) ◽  
pp. 4364 ◽  
Author(s):  
Chan Ho Park

Currently, various tissue engineering strategies have been developed for multiple tissue regeneration and integrative structure formations as well as single tissue formation in musculoskeletal complexes. In particular, the regeneration of periodontal tissues or tooth-supportive structures is still challenging to spatiotemporally compartmentalize PCL (poly-ε-caprolactone)-cementum constructs with micron-scaled interfaces, integrative tissue (or cementum) formations with optimal dimensions along the tooth-root surfaces, and specific orientations of engineered periodontal ligaments (PDLs). Here, we discuss current advanced approaches to spatiotemporally control PDL orientations with specific angulations and to regenerate cementum layers on the tooth-root surfaces with Sharpey’s fiber anchorages for state-of-the-art periodontal tissue engineering.


2016 ◽  
Vol 8 (1) ◽  
pp. 46-48

ABSTRACT An elaborate system of signaling molecules regulates the cellular and molecular events of periodontal healing, the primary strategy for which is functional periodontal compartment regeneration and replication of components of the natural cellular microenvironment by providing an artificial extracellular matrix and by delivering growth factors. A new, so-called gene delivery method works by converting cells into protein- producing factories, thereby bypassing the dilemma. Gene therapy can channel the cellular signals in a controlled and very systematic manner, to provide encoded proteins at every stage of tissue regeneration. The aim of this review is to highlight the applications of gene delivery and tissue engineering in periodontal regeneration. How to cite this article Lakhani N, Vandana KL. Gene Therapy in Periodontal Tissue Engineering. CODS J Dent 2016;8(1):46-48.


Sign in / Sign up

Export Citation Format

Share Document