scholarly journals Relationship between bacteria decomposing organic substances and water pollution in river water.

1994 ◽  
Vol 49 (4) ◽  
pp. 782-790 ◽  
Author(s):  
Masamichi WADA
2021 ◽  
Vol 26 (1) ◽  
pp. 30-40
Author(s):  
O. S. Reshetnyak ◽  
◽  
R. S. Komarov ◽  
◽  

Introduction. The paper explores the long-term spatial and temporal variability of the chemical composition and water quality in the Kuban River. Methods. To study the variability of the chemical composition of river water, we analyzed data from systematic observations over the concentrations of major ions, biogenic and organic substances, petroleum products and heavy metals from 2010 to 2017. To describe the variability of water quality, we used such indicators as water quality class, water pollution level, and characteristic pollutants. Results. It is shown that the spatial change in the chemical composition is uneven — a number of components in the water have low concentrations in the upper reaches, increasing in the lower part of the river. Others are characterized by high concentrations in the middle reaches, followed by a decrease towards the mouth. Over time, the change in the concentrations of chlorides, sulfates, organic substances and petroleum products increases. As for the content of nitrates, a slight decrease was detected in its variability. For the remaining chemicals, there were no clear trends. We established that in most cases the water in the Kuban River can be classified as polluted and very polluted (water quality class 3). We also found that the nature of river water pollution regarding a number of components is stable. Conclusion. In modern conditions of sharp climate changes and anthropogenic impact, the identified features of the chemical composition and trends in water quality variability of the Kuban River are of great practical importance and can be used in the development of environmentally sound recommendations for improving water quality and the state of water ecosystems in the river basin.


Water ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1394 ◽  
Author(s):  
Marsha Putri ◽  
Chao-Hsun Lou ◽  
Mat Syai’in ◽  
Shang-Hsin Ou ◽  
Yu-Chun Wang

The application of multivariate statistical techniques including cluster analysis and principal component analysis-multiple linear regression (PCA-MLR) was successfully used to classify the river pollution level in Taiwan and identify possible pollution sources. Water quality and heavy metal monitoring data from the Taiwan Environmental Protection Administration (EPA) was evaluated for 14 major rivers in four regions of Taiwan with the Erren River classified as the most polluted river in the country. Biochemical oxygen demand (6.1 ± 2.38), ammonia (3.48 ± 3.23), and total phosphate (0.65 ± 0.38) mg/L concentration in this river was the highest of the 14 rivers evaluated. In addition, heavy metal levels in the following rivers exceeded the Taiwan EPA standard limit (lead: 0.01, copper: 0.03, and manganese: 0.03) mg/L concentration: lead-in the Dongshan (0.02 ± 0.09), Jhuoshuei (0.03 ± 0.03), and Xinhuwei Rivers (0.02 ± 0.02) mg/L; copper: in the Dahan (0.036 ± 0.097), Laojie (0.06 ± 1.77), and Erren Rivers are (0.05 ± 0.158) mg/L; manganese: in all rivers. A total 72% of the water pollution in the Erren River was estimated to originate from industrial sources, 16% from domestic black water, and 12% from natural sources and runoff from other tributaries. Our research demonstrated that applying PCA-MLR and cluster analysis on long-term monitoring water quality would provide integrated information for river water pollution management and future policy making.


2021 ◽  
Vol 7 (1) ◽  
pp. 023-024
Author(s):  
Jyoti Das ◽  
Nanda Karmaker ◽  
Ruhul A. Khan

As the population grows and the uncontrolled industrialization, urbanization rises as well, it is high time we should give proper attention to the fact of river pollution in our country which is deploying harmful impacts both on human health and environmental, aquatic ecosystem. A plethora of studies have been done on different aspects of river water pollution. In this paper a thorough discussion regarding this fact has been presented compiling a number of important studies on it. Major causes behind this pollution have been mentioned widely, like improper management of industrial and sewage effluents. However, to detect this contamination in the major rivers of Bangladesh, various studies have been done to see the physicochemical properties of the water, such as pH, turbidity, color, odor, DO, TOD, COD, TSS, EC, dissolved metal, and other chemical and bacteriological substances etc. The microorganisms within the water are the prime sources to cause different water borne diseases like Diarrhea, Cholera, Scabies and Asthma. To find out the remedies to this problem, urgent emphasis should be given on preventive measures and to take appropriate steps to halt and improve the existing pollution of the rivers. A lot of water treatment systems are being practiced throughout the world to restore the health of the rivers as well as to reuse the waste water. Though the systems are not much popular in Bangladesh, the government should facilitates the practice of them extensively and strengthen the laws against environmental pollution.


Author(s):  
Azad Kannaujiya

Gomati River originate from Madhoganj Tanda village in Pilibhit district, U.P. it passes through the district of Shahjahanpur, kheri, Hardoi, Sitapur, Janpur and ultimately merge in Ganga. River water is significant for every living organism as well as aquatic life. Water pollution is a major global problem. Modernization and urbanization have polluted the river water and degraded the status. All over the world we are seeing that drain is the main source of water pollution especially for rivers flowing within the city. This drain generally carries industrial effluent, domestic waste, sewage and medicinal waste resulting in poor water quality. Gomati River receives industrial as well as domestic waste from various drains of Lucknow city. As Gomati river is the only source of surface water near the communities. A total 20 parameters namely Temperature, pH, Turbidity, Conductivity, Total dissolved solids (TDS), Total suspended solids (TSS), Total solids (TS), Dissolved oxygen (DO), Biological oxygen demand (BOD) Chemical oxygen demand (COD), Alkalinity, Total hardness, Calcium as ca, Magnesium as Mg, Chloride, Fluoride, Sulphate as So4, Nickel as Ni, Lead as Pb, and Zinc as Zn where analysed and their variation is discussed to obtain the impact of effluents on water quality. From the result it was found higher than the permissible limit of WHO and BIS.


Author(s):  
Evizal Abdul Kadir ◽  
Hitoshi Irie ◽  
Sri Listia Rosa ◽  
Bahruddin Saad ◽  
Sharul Kamal Abdul Rahim ◽  
...  

2020 ◽  
Vol 31 (1) ◽  
pp. 1-9
Author(s):  
MA Hanif ◽  
R Miah ◽  
MA Islam ◽  
S Marzia

This study was conducted to evaluate the Kapotaksha River water pollution status and its impacts on Human health and Environment. This study conducted a case study on four selected areas (Barakpur, Srirampur, Prbazar, and Gouranandapur) on the Kapotaksha river bank at Jhikargas Upazila. This river water pollution occurs by some natural process such as flood, storm, and natural biodegraded. But human activities are major reasons for the river water pollution. Industrialization, urbanization, domestic waste, sewage system, agrochemicals, etc are major causes for river water pollution. This more polluted water has an impact on human health and environment. This study was conducted to find out the polluted water due to various types of diseases such as scabies, asthma, dysentery and respiratory disease. Most of the people (49%) are affected by Scabies, 4% are affected by diarrhea, 5% are affected by dysentery, 25% of people are suffering from respiratory diseases and 4% are suffering from asthma and the polluted water pollutes soil by using the water in agriculture purpose answered by 20% respondents which is 100% of farmer respondents. If someone does not use this water can not affect soil answered by 80% of respondents. This river water becomes more polluted and harmful for human health and environment because this water hampered by the local colony, local trader, lack of proper management of sewage system, miss-use on the riverbank area for the dumping various solid waste on the river bank, chemical fertilizers, industries etc. At present now we cannot fulfill control this continuous river water pollution but we can minimize this problem and it would be positive for human health, others living organisms and Environment. Progressive Agriculture 31 (1): 1-9, 2020


2016 ◽  
Vol 51 (3) ◽  
pp. 215-220
Author(s):  
A Mizan ◽  
FT Zohra ◽  
S Ahmed ◽  
M Nurnabi ◽  
MZ Alam

Tanneries at Hazaribagh use a large number of chemicals during processing and discharge their effluents to the river Buriganga without appropriate treatment and aggravate its pollution level. This study focuses on a plausible way for the abatement of pollution level of Buriganga river water using low cost adsorbent. Activated carbon prepared from coconut shell was used as a low cost adsorbent. The samples were collected from three different points of the river at three different layers from the surface of water. The collected samples were passed through the activated carbon and a remarkable amount of pollutants were found to be adsorbed. TSS, TDS, BOD5, COD and chromic oxide content of polluted water were reduced significantly.Bangladesh J. Sci. Ind. Res. 51(3), 215-220, 2016


Sign in / Sign up

Export Citation Format

Share Document