scholarly journals Protective Effect of Dihydromyricetin Against Lipopolysaccharide-Induced Acute Kidney Injury in a Rat Model

2016 ◽  
Vol 22 ◽  
pp. 454-459 ◽  
Author(s):  
Jun-Tao Wang ◽  
Peng Jiao ◽  
Yun Zhou ◽  
Qian Liu
Gene ◽  
2020 ◽  
Vol 753 ◽  
pp. 144789
Author(s):  
Firouzeh Gholampour ◽  
Zahra Mohammadi ◽  
Zeinab Karimi ◽  
Seyed Mohammad Owji

2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Zhiya Deng ◽  
Maomao Sun ◽  
Jie Wu ◽  
Haihong Fang ◽  
Shumin Cai ◽  
...  

AbstractOur previous studies showed that silent mating-type information regulation 2 homologue-1 (SIRT1, a deacetylase) upregulation could attenuate sepsis-induced acute kidney injury (SAKI). Upregulated SIRT1 can deacetylate certain autophagy-related proteins (Beclin1, Atg5, Atg7 and LC3) in vitro. However, it remains unclear whether the beneficial effect of SIRT1 is related to autophagy induction and the underlying mechanism of this effect is also unknown. In the present study, caecal ligation and puncture (CLP)-induced mice, and an LPS-challenged HK-2 cell line were established to mimic a SAKI animal model and a SAKI cell model, respectively. Our results demonstrated that SIRT1 activation promoted autophagy and attenuated SAKI. SIRT1 deacetylated only Beclin1 but not the other autophagy-related proteins in SAKI. SIRT1-induced autophagy and its protective effect against SAKI were mediated by the deacetylation of Beclin1 at K430 and K437. Moreover, two SIRT1 activators, resveratrol and polydatin, attenuated SAKI in CLP-induced septic mice. Our study was the first to demonstrate the important role of SIRT1-induced Beclin1 deacetylation in autophagy and its protective effect against SAKI. These findings suggest that pharmacologic induction of autophagy via SIRT1-mediated Beclin1 deacetylation may be a promising therapeutic approach for future SAKI treatment.


2021 ◽  
Vol 546 ◽  
pp. 103-110
Author(s):  
Masayoshi Saito ◽  
Satoshi Horie ◽  
Hidenori Yasuhara ◽  
Akane Kashimura ◽  
Eiji Sugiyama ◽  
...  

Author(s):  
Yon-Suk Kim ◽  
Si-Heung Sung ◽  
Yujiao Tang ◽  
Eun-Ju Choi ◽  
Young-Jin Choi ◽  
...  

2022 ◽  
Vol 8 (1) ◽  
Author(s):  
Cheol Ho Park ◽  
Bin Lee ◽  
Myeonggil Han ◽  
Woo Joong Rhee ◽  
Man Sup Kwak ◽  
...  

AbstractSodium-glucose cotransporter 2 inhibitors, which are recently introduced as glucose-lowering agents, improve cardiovascular and renal outcomes in patients with diabetes mellitus. These drugs also have beneficial effects in various kidney disease models. However, the effect of SGLT2 inhibitors on cisplatin-induced acute kidney injury (AKI) and their mechanism of action need to be elucidated. In this study, we investigated whether canagliflozin protects against cisplatin-induced AKI, depending on adenosine monophosphate-activated protein kinase (AMPK) activation and following induction of autophagy. In the experiments using the HK-2 cell line, cell viability assay and molecular analysis revealed that canagliflozin protected renal proximal tubular cells from cisplatin, whereas addition of chloroquine or compound C abolished the protective effect of canagliflozin. In the mouse model of cisplatin-induced AKI, canagliflozin protected mice from cisplatin-induced AKI. However, treatment with chloroquine or compound C in addition to administration of cisplatin and canagliflozin eliminated the protective effect of canagliflozin. Collectively, these findings indicate that canagliflozin protects against cisplatin-induced AKI by activating AMPK and autophagy in renal proximal tubular cells.


2018 ◽  
Vol 503 (1) ◽  
pp. 304-308 ◽  
Author(s):  
Bassim I. Mohammad ◽  
Abdulla K. Raheem ◽  
Najah R. Hadi ◽  
Dina A. Jamil ◽  
Hayder A. Al-Aubaidy

2020 ◽  
Vol 19 (3) ◽  
pp. 270-276
Author(s):  
Jianying Wang ◽  
Xiaoting Yu

Acute kidney injury is a severe complication of sepsis. We have shown a protective effect of Platycodin D on sepsis induced acute kidney injury in an animal model that employs cecal ligation and puncture. Cecal ligation and puncture induced a series of degenerative changes in kidney, such as edema, hyperemia, and expansion in glomerular capillary, and inflammatory cells infiltration that were attenuated by Platycodin D. Also, rise in proinflammatory cytokine levels in septic rats was blunted by Platycodin D. Furthermore, Platycodin D administration reduced rise in serum levels of kidney injury markers-blood urea nitrogen and serum creatinine-in septic rats. Moreover, Platycodin D administration also suppressed the cell apoptosis in kidney that was associated with enhanced B-cell lymphoma 2 protein and reduced cleaved cysteine-aspartic protease-3 and BCL2-associated X protein. Lastly, Platycodin D administration attenuated sepsis-induced increase of phospho (p)-extracellular signal-regulated kinase, p-c-Jun NH2-terminal kinase, and p-p38. In conclusion, Platycodin D demonstrated protective effect against sepsis induced acute kidney injury through inactivation of mitogen activated protein kinase pathways, thus providing promising therapeutic strategy for the treatment of sepsis.


Sign in / Sign up

Export Citation Format

Share Document