scholarly journals Nitric Oxide: An Attractive Signalling Molecule.

1995 ◽  
Vol 28 (2) ◽  
pp. 97-106 ◽  
Author(s):  
Eiko Aoki ◽  
Ikuo K. Takeuchi ◽  
Ryujiro Shoji
2019 ◽  
Vol 26 (31) ◽  
pp. 5764-5780 ◽  
Author(s):  
Svetlana I. Galkina ◽  
Ekaterina A. Golenkina ◽  
Galina M. Viryasova ◽  
Yulia M. Romanova ◽  
Galina F. Sud’ina

Background: Nitric Oxide (NO) is a key signalling molecule that has an important role in inflammation. It can be secreted by endothelial cells, neutrophils, and other cells, and once in circulation, NO plays important roles in regulating various neutrophil cellular activities and fate. Objective: To describe neutrophil cellular responses influenced by NO and its concomitant compound peroxynitrite and signalling mechanisms for neutrophil apoptosis. Methods: Literature was reviewed to assess the effects of NO on neutrophils. Results: NO plays an important role in various neutrophil cellular activities and interaction with other cells. The characteristic cellular activities of neutrophils are adhesion and phagocytosis. NO plays a protective role in neutrophil-endothelial interaction by preventing neutrophil adhesion and endothelial cell damage by activated neutrophils. NO suppresses neutrophil phagocytic activity but stimulates longdistance contact interactions through tubulovesicular extensions or cytonemes. Neutrophils are the main source of superoxide, but NO flow results in the formation of peroxynitrite, a compound with high biological activity. Peroxynitrite is involved in the regulation of eicosanoid biosynthesis and inhibits endothelial prostacyclin synthase. NO and peroxynitrite modulate cellular 5-lipoxygenase activity and leukotriene synthesis. Long-term exposure of neutrophils to NO results in the activation of cell death mechanisms and neutrophil apoptosis. Conclusion: Nitric oxide and the NO/superoxide interplay fine-tune mechanisms regulating life and death in neutrophils.


2019 ◽  
Vol 70 (17) ◽  
pp. 4333-4343 ◽  
Author(s):  
Abhaypratap Vishwakarma ◽  
Aakanksha Wany ◽  
Sonika Pandey ◽  
Mallesham Bulle ◽  
Aprajita Kumari ◽  
...  

AbstractNitric oxide (NO) is now established as an important signalling molecule in plants where it influences growth, development, and responses to stress. Despite extensive research, the most appropriate methods to measure and localize these signalling radicals are debated and still need investigation. Many confounding factors such as the presence of other reactive intermediates, scavenging enzymes, and compartmentation influence how accurately each can be measured. Further, these signalling radicals have short half-lives ranging from seconds to minutes based on the cellular redox condition. Hence, it is necessary to use sensitive and specific methods in order to understand the contribution of each signalling molecule to various biological processes. In this review, we summarize the current knowledge on NO measurement in plant samples, via various methods. We also discuss advantages, limitations, and wider applications of each method.


2018 ◽  
Vol 38 (01) ◽  
pp. 93-104 ◽  
Author(s):  
Amr A. Mohamed ◽  
Mona M. Ali ◽  
Moataza A. Dorrah ◽  
Taha T. M. Bassal

AbstractNitric oxide (NO) plays various roles in insect immunity: as a cytotoxic component and as a signalling molecule; and immune-reactive lysozymes (IrLys) provide a first line of humoral immune functions against invading bacteria. Although there is considerable literature on eicosanoid and biogenic monoamine actions on insect immunity, there is no information on the role(s) of these chemicals in inducing NO and IrLys. We addressed this gap by challenging third instarSarcophaga(Liopygia)argyrostoma(Robineau-Desvoidy) with the Gram-positive bacteriumMicrococcus luteus. Here, we report that bacterial challenge induces elevation of NO and IrLys concentrations in haemocytes and in the fat body. The plasma pool content is comparatively low. Eicosanoid biosynthesis inhibitors (EBIs) lead to suppression of both NO and IrLys levels. Control larvae have low constitutive levels of NO and lysozyme concentrations. Octopamine (OA) elicits elevation of NO and IrLys concentrations. A similar effect is obtained by 5-hydroxytryptamine (5-HT) for NO. These data indicate immune-mediating roles of eicosanoids, OA and 5-HT in NO and IrLys activities.


Plant Science ◽  
2007 ◽  
Vol 172 (5) ◽  
pp. 876-887 ◽  
Author(s):  
Magdalena Arasimowicz ◽  
Jolanta Floryszak-Wieczorek

2012 ◽  
Vol 109 (6) ◽  
pp. 1055-1064 ◽  
Author(s):  
Zhi Bin Meng ◽  
Li Qian Chen ◽  
Dong Suo ◽  
Gui Xin Li ◽  
Cai Xian Tang ◽  
...  

2009 ◽  
Vol 423 (2) ◽  
pp. 169-177 ◽  
Author(s):  
Benjamin S. Rayner ◽  
Susan Hua ◽  
Tharani Sabaretnam ◽  
Paul K. Witting

Mb (myoglobin) is a haemoprotein present in cardiac, skeletal and smooth muscle and is primarily responsible for the storage and ‘facilitated transfer’ of molecular oxygen from the cell membrane to mitochondria. Also, Mb plays a role in regulating •NO (nitric oxide) homoeostasis through (i) binding •NO (Mb–NO complex); (ii) oxidation of •NO to nitrate; and (iii) formation of vasoactive S-nitroso-Mb [Rayner, B.S., Wu, B.-J., Raftery, M., Stocker, R. and Witting, P.K. (2005) J. Biol. Chem. 280, 9985–9993]. Pathological •NO concentrations affect mitochondrial function and decrease cell viability through inducing apoptosis. Treatment of cultured rat VSMCs (vascular smooth muscle cells) with cumulative doses (0.1, 1 or 10 μM) of •NO from the donors diethylamineNONOate or spermineNONOate (N-[2-aminoethyl]-N-[2-hydroxy-3-nitrosohydrazine]-1,2-ethelenediamine) yielded a time-dependent increase in Mb gene expression. Concomitant transcriptional activation increased the concentration of Mb within cultured rat or primary human VSMCs as judged by Western blot analysis and indirect immunofluorescence microscopy. Cell viability did not decrease in these cells at the •NO doses tested. Importantly, sub-culturing isolated rat aortic segments for 7 days in the presence of L-arginine at 37 °C stimulated •NO production with a parallel increase in Mb in the underlying VSMCs. Overall, exposure of VSMCs (either in cell culture or intact vessels) to pathological •NO promotes an up-regulation of the Mb gene and protein, suggesting a feedback relationship between •NO and Mb that regulates the concentration of the potent cell signalling molecule in the vessel wall, similar to the role haemoglobin plays in the vessel lumen.


2018 ◽  
Vol 2 ◽  
pp. 239821281881068 ◽  
Author(s):  
John Garthwaite

One of the simplest molecules in existence, nitric oxide, burst into all areas of biology some 30 years ago when it was established as a major signalling molecule in the cardiovascular, nervous and immune systems. Most regions of the mammalian brain synthesise nitric oxide and it has many diverse roles both during development and in adulthood. Frequently, nitric oxide synthesis is coupled to the activation of NMDA receptors and its physiological effects are mediated by enzyme-linked receptors that generate cGMP. Generally, nitric oxide appears to operate in two main modes: first, in a near synapse-specific manner acting either retrogradely or anterogradely and, second, when multiple nearby sources are active simultaneously, as a volume transmitter enabling signalling to diverse targets irrespective of anatomical connectivity. The rapid diffusibility of nitric oxide and the efficient capture of fleeting, subnanomolar nitric oxide concentrations by its specialised receptors underlie these modes of operation.


Sign in / Sign up

Export Citation Format

Share Document