scholarly journals Effect of Forearm Dynamic Taping on Muscle Activity of Extensor Carpi Radialis Brevis During Wrist Isometric and Isotonic Contraction

2021 ◽  
Vol 28 (2) ◽  
pp. 93-100
Author(s):  
Tian-zong Huang ◽  
Suhn-yeop Kim
2008 ◽  
Vol 24 (3) ◽  
pp. 298-303 ◽  
Author(s):  
Jennifer Di Domizio ◽  
Jeremy P.M. Mogk ◽  
Peter J. Keir

Wrist splints are commonly prescribed to limit wrist motion and provide support at night and during inactive periods but are often used in the workplace. In theory, splinting the wrist should reduce wrist extensor muscle activity by stabilizing the joint and reducing the need for co-contraction to maintain posture. Ten healthy volunteers underwent a series of 24 10-s gripping trials with surface electromyography on 6 forearm muscles. Trials were randomized between splinted and nonsplinted conditions with three wrist postures (30° flexion, neutral, and 30° extension) and four grip efforts. Custom-made Plexiglas splints were taped to the dorsum of the hand and wrist. It was found that when simply holding the dynamometer, use of a splint led to a small (<1% MVE) but significant reduction in activity for all flexor muscles and extensor carpi radialis (all activity <4% maximum). At maximal grip, extensor muscle activity was significantly increased with the splints by 7.9–23.9% MVE. These data indicate that splinting at low-to-moderate grip forces may act to support the wrist against external loading, but appears counterproductive when exerting maximal forces. Wrist bracing should be limited to periods of no to light activity and avoided during tasks that require heavy efforts.


Author(s):  
Chantelle Rigozzi ◽  
Jeremy Cox ◽  
Gareth A Vio ◽  
William L Martens ◽  
Philip Poronnik

Elbow tendinopathy injuries are very common in tennis players. One of the commonly accepted theories describing the development of elbow tendinopathy in tennis is based on stiffness of the forearm skeletal muscle units and their repetitive overuse in the forehand stroke. Our objective was to use a novel microcontroller based wearable device to compare the influence of different forehand spin levels (flat, topspin and lob) and ball exit speed on forearm muscle activity in the potential onset of elbow tendinopathy in experienced adult tennis players. Peak normalised extensor carpi radialis (ECR) and flexor carpi radialis (FCR) muscle activity corresponding to each forehand shot and ball exit speed were determined and analysed. For the ECR shots (flat = 121, topspin = 272 and lob = 273) by 8 players, Kruskal-Wallis test (p < 0.001) and Post-Hoc tests revealed a significant difference between the flat and topspin spin levels (p < 0.01) and flat and lob spin levels (p < 0.001). For the FCR shots (flat = 125, topspin = 301 and lob = 303) by 9 players, Kruskal-Wallis test showed no significant difference between the three spin levels. For the corresponding ball speed, the Kruskal-Wallis (p < 0.001) and subsequent Post-Hoc (p < 0.001) showed that flat hits had the significantly highest ball speed followed by topspin then lob accordingly for both muscles included shots. Our results suggest that coaches could consider recommending players to hit forehands with topspin in order to potentially reduce the risk of developing lateral elbow tendinopathy.


Author(s):  
Porakoch Sirisuwan ◽  
Chieko Narita ◽  
Tetsushi Koshino ◽  
Hisanori Yuminaga

The aim of study is to evaluate whether altering the bamboo moisture by immersed bamboo in water on 4-hour and 3 -day that would affect the muscle activity during separated bamboo by bending process. Moreover, thirteen muscles which bilateral side of Pectoralis major, Biceps brachii, Triceps brachii, Latissimus dorsi, Gluteus medius and only right side of Rectus abdominis, Extensor carpi radialis longus and Flexor carpi radialis were recorded. As a result, the bilateral side of Biceps brachii, right side of Extensor carpi radialis longus and Flexor carpi radialis, left side of Triceps brachii showed the difference quite clearly. When the craftsman was bending the bamboo he was necessary more effortful by these muscles activity on the 4-hour immersed bamboo in water than the 3-day. The scanning electron microscopy (SEM) photographs showed the fracture characteristic of 2 subjects that the adhesive of bamboo fiber decreased when increased moisture.


2018 ◽  
Author(s):  
◽  
Daniel James Fenton

Objective: The effects of spinal manipulation are well documented, however there is a gap in the current literature regarding the neurophysiological mechanisms responsible for these effects. Further evidence is required to reveal the specific neurophysiological mechanisms of spinal manipulative therapy and its effect on muscle activity. The objectives of this study were to investigate the short-term effects of a single cervical spine manipulation on grip strength and muscle activity of the forearm flexors and extensors in an asymptomatic sample when compared to a control. Methods: A randomised, controlled, pre-test, post-test, repeated measures design allowed for 46 participants, aged 18-35 years old, with joint dysfunction at C7 to be allocated to either a cervical spine manipulation or a control group. Force output and muscle activity of the forearm flexors and extensors were measured before and immediately after the intervention and again at 5, 10 and 15-minutes. IBM SPSS was used to analyse the data with significance set at (p=0.05). Repeated measures ANOVA testing and Post hoc contrast studies were used to determine significance within, and between, groups. Results: In the treatment group there was a statistically significant change in muscle activity over time in the Extensor carpi radialis (p=0,013) and Extensor digitorum (p=0,021). Similarly, force output increased within the treatment group over time (p=0,012). A statistically significant beneficial treatment effect was identified between the groups in the Extensor carpi radialis (p=0,001) and Flexor digitorum superficialis (p=0,019) muscles only. Conclusion: Though statistical significance was not detected in all muscle groups, this study showed a trend of a treatment effect following cervical spine manipulation (C7) with most values lying just outside the parameters set for significance. Specific muscles of the forearm were affected more than others. Future studies are required with a larger sample to validate the trends observed in this study.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9759
Author(s):  
Carla P. Chaytor ◽  
Davis Forman ◽  
Jeannette Byrne ◽  
Angela Loucks-Atkinson ◽  
Kevin E. Power

Arm cycling is commonly used in rehabilitation settings for individuals with motor impairments in an attempt to facilitate neural plasticity, potentially leading to enhanced motor function in the affected limb(s). Studies examining the neural control of arm cycling, however, typically cycle using a set cadence and power output. Given the importance of motor output intensity, typically represented by the amplitude of electromyographic (EMG) activity, on neural excitability, surprisingly little is known about how arm muscle activity is modulated using relative workloads. Thus, the objective of this study was to characterize arm muscle activity during arm cycling at different relative workloads. Participants (n = 11) first completed a 10-second maximal arm ergometry sprint to determine peak power output (PPO) followed by 11 randomized trials of 20-second arm cycling bouts ranging from 5–50% of PPO (5% increments) and a standard 25 W workload. All submaximal trials were completed at 60 rpm. Integrated EMG amplitude (iEMG) was assessed from the biceps brachii, brachioradialis, triceps brachii, flexor carpi radialis, extensor carpi radialis and anterior deltoid of the dominant arm. Arm cycling was separated into two phases, flexion and extension, relative to the elbow joint for all comparisons. As expected, iEMG amplitude increased during both phases of cycling for all muscles examined. With the exception of the triceps brachii and extensor carpi radialis, iEMG amplitudes differed between the flexion and extension phases. Finally, there was a linear relationship between iEMG amplitude and the %PPO for all muscles during both elbow flexion and extension.


2013 ◽  
Vol 10 ◽  
pp. 318-323 ◽  
Author(s):  
Mirta Widia ◽  
Siti Zawiah Md Dawal

The paper focused on the effects of vibration exposure on muscle activity and grip strength. The study was conducted on eighteen subjects, required to drill wood material using electric drill for 5 and 15 minutes. Electromyography (EMG), Vernier Labpro with 3 axis accelerometer and hand dynamometer were used in the experiment. The results showed that right extensor carpi radialis muscle had the highest percentage of Maximum Voluntary Contraction (MVC) with values of 21.8%MVC-23.5%MVC. The mean vibration level was 10.45 m/s2 (5 minutes) and 10.69 m/s2 (15 minutes). Drilling wood material for 15 minutes resulted in higher percentage MVC (7.79%), vibration levels (2.29%), and percentage decrease ratio (11.17%) than using 5 minutes for the extensor carpi radialis muscle. The findings of the study indicated that as the level of vibration and exposure duration increase the muscular activity and the percentage decrease ratio of grip strength would also increase.


2002 ◽  
Vol 16 (2) ◽  
pp. 92-96
Author(s):  
Tiina Ritvanen ◽  
Reijo Koskelo ◽  
Osmo H„nninen

Abstract This study follows muscle activity in three different learning sessions (computer, language laboratory, and normal classroom) while students were studying foreign languages. Myoelectric activity was measured in 21 high school students (10 girls, 11 boys, age range 17-20 years) by surface electromyography (sEMG) from the upper trapezius and frontalis muscles during three 45-min sessions. Root mean square (RMS) average from both investigated muscles was calculated. The EMG activity was highest in both muscle groups in the computer-aided session and lowest in the language laboratory. The girls had higher EMG activity in both investigated muscle groups in all three learning situations. The measured blood pressure was highest at the beginning of the sessions, decreased within 10 min, but increased again toward the end of the sessions. Our results indicate that the use of a computer as a teaching-aid evokes more constant muscle activity than the traditional learning situations. Since muscle tension can have adverse health consequences, more research is needed to determine optimal classroom conditions, especially when technical aids are used in teaching.


2012 ◽  
Author(s):  
Ehsan Rashedi ◽  
Bochen Jia ◽  
Maury A. Nussbaum ◽  
Thurmon E. Lockhart

Sign in / Sign up

Export Citation Format

Share Document