Karst Collapse Column Features and Mechanism of Formation in Fangezhuang Coal Mine

2020 ◽  
Vol 08 (03) ◽  
pp. 368-379
Author(s):  
义海 王
Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Shichuan Zhang ◽  
Baotang Shen ◽  
Yangyang Li ◽  
Shengfan Zhou

Water inrush in underground mines is a major safety threat for mining personnel, and it can also cause major damage to mining equipment and result in severe production losses. Water inrush can be attributed to the coalescence of rock fractures and the formation of water channel in rock mass due to the interaction of fractures, hydraulic flow, and stress field. Hence, predicting the fracturing process is the key for investigating the water inrush mechanisms for safe mining. A new coupling method is designed in FRACOD to investigate the mechanisms of water inrush disaster (known as “Luotuoshan accident”) which occurred in China in 2010 in which 32 people died. In order to investigate the evolution processes and mechanisms of water inrush accident in Luotuoshan coal mine, this study applies the recently developed fracture-hydraulic (F-H) flow coupling function to FRACOD and focuses on the rock fracturing processes in a karst collapse column which is a geologically altered zone linking several rock strata vertically formed by the long-term dissolution of the flowing groundwater. The numerical simulation of water inrush is conducted based on the actual geological conditions of Luotuoshan mining area, and various materials with actual geological characteristics were used to simulate the rocks surrounding the coal seam. The influences of several key factors, such as in situ stresses, fractures on the formation, and development of water inrush channels, are investigated. The results indicate that the water inrush source is the Ordovician limestone aquifer, which is connected by the karst collapse column to No. 16 coal seam; the fracturing zone that led to a water inrush occurs in front of the roadway excavation face where new fractures coalesced with the main fractured zone in the karst collapse column.


2013 ◽  
Vol 634-638 ◽  
pp. 3537-3540
Author(s):  
Xin Xian Zhai ◽  
Xiao Ju Li ◽  
Yan Wei Zhai

Duanwang Coal Mine is located at north of Qinshui coalfield in Shanxi province, China, which gently inclined and thick seams have been mined. Authorized production capacity of the coal mine is 1.8Mt/a. With the increase of mining depth, the mine gas emission quantity increased. Karst collapse columns are very developed in the minefield, and the phenomenon of abnormal gas emission always occurred at the coal face and driving gateway around the collapse columns, then the mine became high gassy one from low gassy mine. Using field measurement and theoretical analysis methods, the following conclusion can be drawn. Karst collapse columns have significant influences on gas emission of the coal face and driving gateway. Here are large amount of free form gas into and around the collapse columns, the collapse columns were disclosure while driving gateway, a large amount of the free gas into collapse column would be instantly released, which caused abnormal gas emission at driving gateway, even leading to gas density exceeding limitation by Coal Mine Safety Regulation of China. However, during mining area of the collapse columns, gas emission quantity at coal face was relatively smaller.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 655 ◽  
Author(s):  
Fangpeng Cui ◽  
Qiang Wu ◽  
Chen Xiong ◽  
Xiang Chen ◽  
Fanlan Meng ◽  
...  

On 1 March 2010, a disastrous groundwater inrush occurred at the Luotuoshan coalmine in Wuhai (Inner Mongolia, China). Great effort was taken during the post-accident rescue. However, triggered by a large amount of groundwater rushed in from the Ordovician limestone aquifer underlying the No.16 coal seam through the fractured sandy claystone and the karst collapse column, it caused great damage, including 32 deaths and direct economic losses of over 48 million yuan. The groundwater inrush originated from the floor heave in the air return gallery of the No.16 coal seam. The peak inflow rate was 60,036 m3/h. The gallery excavation under conditions caused by the incompletely recognized hydrogeological environment induced the accident. The unidentified spatial distribution of the karst collapse column triggered the accident directly. The high-pressure groundwater accumulated in the collapse column and the gallery excavation, which caused the redistribution of the in situ stress, contributing to progressive fractures in the floor of the No. 16 coal seam. Eventually, an intensive water-conductive passage consisting of the fractured floor and the karst collapse column formed. Administratively/technically, that mandatory regulations on gallery excavation were not carried out which contributed the accident. Moreover, the poor awareness about groundwater inrush recognition and quick remediation also contoirbuted to the disastrous extent of the accident.


PLoS ONE ◽  
2019 ◽  
Vol 14 (8) ◽  
pp. e0219733 ◽  
Author(s):  
Jianping Zuo ◽  
Zijie Hong ◽  
Suping Peng ◽  
Yue Shi ◽  
Hongqiang Song ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (3) ◽  
pp. 1656-1665 ◽  
Author(s):  
Xian'gang Hou ◽  
Wenhao Shi ◽  
Tianhong Yang

A non-linear flow model that couples three flow types is built based on flow transition to investigate the flow behavior of water inrush induced by KCC.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Zhengzheng Cao ◽  
Yulou Ren ◽  
Qinting Wang ◽  
Banghua Yao ◽  
Xinchao Zhang

There are many karst collapse columns in coal seam roof in the southern coal field in China, which are different from those in coal seam floor in the northern coal field, due to the stratum characteristics. The karst collapse column in coal seam roof tends to reactivate and conduct water and induce the serious water inrush disaster, when the karst collapse column communicates with the overlying aquifer. In order to reveal the evolution mechanism of water-conducting channel of collapse column in karst mining area of southwest China, the aquifers and water inflow rule in 1908 working face in Qianjin coal mine are analyzed. Besides, the particle size distribution and mineral component of collapse column are researched by the X-ray diffraction test and the screening method, which are the basis for researching the water inrush mechanism in karst collapse column. On this basis, the water inrush of roof collapse column under the influence of mining is researched by establishing the numerical calculation model with the UDEC numerical software. The results show that the water flowing into the 1908 working face comes from the Changxing formation aquifer and Yulongshan formation aquifer above the coal seam, and the proportion of coarse particles and fine particles in collapse column is 89.86% and 10.14%, respectively. With the advance of working face, the water-conducting channel connected the working face with the aquifer, or the surface is formed by collapse pits, karst caves, and collapse column. The research results can be treated as an important basis for the water-preserved mining in southern coal field in China.


2015 ◽  
Vol 737 ◽  
pp. 817-822
Author(s):  
Yong Jun Li ◽  
Hao Sun ◽  
Xiao Ming Li

The collapse column is widely developed and distributed in North China coalfield, has been a threat for coal mine production safety. According to the existing collapse columns in pansan mine, using the combination with geology analyzing and geophysical exploration technology, the cause and development regularity of the collapse columns is discussed in a way of palaeogeographic and palaeoenvironment, the inner filling material features of the collapse columns in the coalfield are introduced, The watery features of collapse columns are studied. The results show that collapse columns have a law of zonation in the horizontal and vertical , and have a certain subsiding distance, collapse column widths ranging periphery have the peripheral edge of the impact zone and transition zone, In the collapse column, the cementation degree is poor at the top, highly compressed at the middle and relatively poor in the bottom. The top and middle sections are less in water bearing, the rich water in the bottom was caused by the vertically leakage recharge from Ordovician limestone in the deep. The research results provide scientific basis for the prevention of collapse column in coal mine.


Sign in / Sign up

Export Citation Format

Share Document