Turnout in Classical Dance: Is It Possible to Enhance the External Rotation of the Lower Limb by a Myofascial Manipulation? A Pilot Study

2017 ◽  
Vol 21 (4) ◽  
pp. 168-178 ◽  
Author(s):  
Christine Lohr ◽  
Tobias Schmidt
Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 627-P
Author(s):  
WUQUAN DENG ◽  
MIN HE ◽  
BING CHEN ◽  
YU MA ◽  
DAVID ARMSTRONG ◽  
...  

2021 ◽  
Vol 11 (8) ◽  
pp. 3391
Author(s):  
Jan Marušič ◽  
Goran Marković ◽  
Nejc Šarabon

The purpose of this study was to evaluate intra- and inter-session reliability of the new, portable, and externally fixated dynamometer called MuscleBoard® for assessing the strength of hip and lower limb muscles. Hip abduction, adduction, flexion, extension, internal and external rotation, knee extension, ankle plantarflexion, and Nordic hamstring exercise strength were measured in three sessions (three sets of three repetitions for each test) on 24 healthy and recreationally active participants. Average and maximal value of normalized peak torque (Nm/kg) from three repetitions in each set and agonist:antagonist ratios (%) were statistically analyzed; the coefficient of variation and intra-class correlation coefficient (ICC2,k) were calculated to assess absolute and relative reliability, respectively. Overall, the results display high to excellent intra- and inter-session reliability with low to acceptable within-individual variation for average and maximal peak torques in all bilateral strength tests, while the reliability of unilateral strength tests was moderate to good. Our findings indicate that using the MuscleBoard® dynamometer can be a reliable device for assessing and monitoring bilateral and certain unilateral hip and lower limb muscle strength, while some unilateral strength tests require some refinement and more extensive familiarization.


2021 ◽  
Vol 104 (1) ◽  
pp. 003685042199848
Author(s):  
Bianca Brix ◽  
Gert Apich ◽  
Andreas Rössler ◽  
Sebastian Walbrodt ◽  
Nandu Goswami

Lymphedema is manifested as a chronic swelling arising due to stasis in the lymphatic flow. No cure is currently available. A non-invasive treatment is a 3 week complete decongestive therapy (CDT), including manual lymphatic drainage and compression bandaging to control swelling. As CDT leads to mobilization of several liters of fluid, effects of CDT on hyaluronan clearance (maker for lymphatic outflow), volume regulating hormones, total plasma protein as well as plasma density, osmolality and selected electrolytes were investigated. In this pilot study, we assessed hyaluronan and volume regulating hormone responses from plasma samples of nine patients (three males, six females, aged 55 ± 13 years) with lower limb lymphedema stage II-III, before - and after - CDT. A paired non-parametric test (Wilcoxon) was used to assess hormonal and plasma volume changes. Correlation was tested using Spearman’s correlation. The main findings of this novel study are that lymphedema patients lost volume and weight after therapy. Hyaluronic acid did not significantly change pre- compared to post-CDT. Aldosterone increased significantly after therapy, while plasma renin activity increased, but not significantly. Plasma total protein, density, osmolality and sodium and chloride did not show differences after CDT. To our knowledge, no study has previously investigated the effects of CDT on volume regulating hormones or electrolytes. To identify the time-course of volume regulating hormones and lymphatic flow changes induced by CDT, future studies should assess these parameters serially over 3 weeks of therapy.


Author(s):  
Jing Huang ◽  
Can Huang ◽  
Fuhao Mo

Abstract Lower limb injuries caused by under-foot impacts often appear in sport landing, automobile collision, and anti-vehicular landmine blasts. The purpose of the present study was to evaluate a foot-ankle-leg model of the Human Active Lower Limb (HALL) model, and used it to investigate lower leg injury responses in different under-foot loading environments to provide a theoretical basis for the design of physical dummies adapted to multiple loading conditions. The model was first validated in allowable rotation loading conditions, like dorsiflexion, inversion/eversion, and external rotation. Then, its sensitivity to loading rates and initial postures was further verified through experimental data concerning both biomechanical stiffness and injury locations. Finally, the model was used to investigate the biomechanical responses of the foot-ankle-leg region in different under-foot loading conditions covering the loading rate from sport landing to blast impact. The results showed that from -15° plantarflexion to 30° dorsiflexion, the neutral posture always showed the largest tolerance, and more than 1.5 times tolerance gap was achieved between neutral posture and dorsiflexion 30°. Under-foot impacts from 2 m/s to 14 m/s, the peak tibia force increased at least 1.9 times in all postures. Thus, we consider that it is necessary to include initial posture and loading rate factors in the definition of the foot-ankle-leg injury tolerance for under-foot impact loading.


2019 ◽  
Vol 59 (5) ◽  
pp. 29-32
Author(s):  
Eisaku Ito ◽  
Naoki Toya ◽  
Ryosuke Nishie ◽  
Yuri Murakami ◽  
Soichiro Fukushima ◽  
...  

Author(s):  
Lin Fu ◽  
Yaodong Gu ◽  
Qichang Mei ◽  
Julien S Baker ◽  
Justin Fernandez

The study aimed to investigate the differences in lower limb joint angles during running with three different sports shoes: basketball shoes, football shoes, and running shoes. Fifteen male subjects (age: 25 ± 2.2 years, height: 1.79 ± 0.05 m, and mass: 70.8 ± 3.4 kg) were asked to run on a treadmill at their preferred running speed. The Vicon 3D motion analysis system was used to capture the kinematics of the lower extremity during running. A one-way analysis of variance was used to determine whether any statistical significance existed between the three types of shoes (α < 0.05). Significant differences existed in the lower limb joints between the three sports shoes, particularly at the knee joint. Running shoes presented more knee flexion than basketball shoes and football shoes. In the frontal plane, basketball shoes showed less knee abduction than running shoes and football shoes. No significant difference occurred in ankle external rotation between basketball shoes and football shoes, and both of them presented greater range of motion of the ankle and knee than running shoes.


2020 ◽  
Vol 76 ◽  
pp. 305-310 ◽  
Author(s):  
Thais B. Cardoso ◽  
Juliana M. Ocarino ◽  
Clara C. Fajardo ◽  
Bruno D.C. Paes ◽  
Thales R. Souza ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document