Μοριακή, δομική και καταλυτική μελέτη καινοτόμων βιοκαταλυτών (ημικυτταρινάσες) που εμπλέκονται στην αποικοδόμηση της φυτικής βιομάζας

2015 ◽  
Author(s):  
Μαρία-Δέσποινα Χαραυγή

Η αποικοδόμηση της φυτικής βιομάζας με τη χρήση ημικυτταρινασών παραμένει ένα από τα προαπαιτούμενα για την αποδοτική παραγωγή βιοκαυσίμων δεύτερης γενιάς από ζυμώσιμα σάκχαρα. Οι γλυκουρονικές εστεράσες (Glucuronoyl Esterases, GEs), ανήκουν σε μια πρόσφατα ανακαλυφθείσα οικογένεια υδατανθρακικών εστερασών (Carbohydrate Esterases, CEs), CE-15, που φέρονται να υδρολύουν τον εστερικό δεσμό μεταξύ των πλευρικών ομάδων του 4-O-μεθυλο-D-γλυκουρονικού οξέος της γλυκουρονοξυλάνης και αρωματικών αλκοολών της λιγνίνης. Ο συγκεκριμένος δεσμός θεωρείται ότι εκπροσωπεί ένα από τα δυσκολότερα στάδια που απαντώνται κατά την πλήρη αποδέσμευση της λιγνίνης από τους υδατάνθρακες που συνθέτουν την ημικυτταρίνη. Στην παρούσα διδακτορική διατριβή δόθηκε έμφαση στην εστεράση του γλυκουρονικού Η αποικοδόμηση της φυτικής βιομάζας με τη χρήση ημικυτταρινασών παραμένει ένα από τα προαπαιτούμενα για την αποδοτική παραγωγή βιοκαυσίμων δεύτερης γενιάς από ζυμώσιμα σάκχαρα. Οι γλυκουρονικές εστεράσες (Glucuronoyl Esterases, GEs), ανήκουν σε μια πρόσφατα ανακαλυφθείσα οικογένεια υδατανθρακικών εστερασών (Carbohydrate Esterases, CEs), CE-15, που φέρονται να υδρολύουν τον εστερικό δεσμό μεταξύ των πλευρικών ομάδων του 4-O-μεθυλο-D-γλυκουρονικού οξέος της γλυκουρονοξυλάνης και αρωματικών αλκοολών της λιγνίνης. Ο συγκεκριμένος δεσμός θεωρείται ότι εκπροσωπεί ένα από τα δυσκολότερα στάδια που απαντώνται κατά την πλήρη αποδέσμευση της λιγνίνης από τους υδατάνθρακες που συνθέτουν την ημικυτταρίνη. Στην παρούσα διδακτορική διατριβή δόθηκε έμφαση στην εστεράση του γλυκουρονικού οξέος αλλά και μεταλλάγματός της από το θερμόφιλο μύκητα Myceliophthora thermophila (συνώνυμο Sporotrichum thermophile, StGE2 και S213A StGE2, αντίστοιχα), και στην εστεράση του γλυκουρονικού οξέος από το μεσόφιλο μικροοργανισμό Podospora anserina (PaGE1). Ειδικότερα, πραγματοποιήθηκαν μελέτες τόσο της StGE2 όσο και της PaGE1 ως προς την υδρόλυση εμπορικά διαθέσιμου συνθετικού υποστρώματος. Η πειραματική μεθοδολογία τριών σταδίων που αναπτύχθηκε αποτελεί έναυσμα για την ανακάλυψη και μελέτη νέων GEs. Παράλληλα, εξετάστηκε η StGE2 ως προς το συνθετικό δυναμικό μέσω αντιδράσεων εστεροποίησης και μετεστεροποίησης σε μη συμβατικά συστήματα που περιελάμβανε επίσης την ακινητοποίησή της. Στην ελεύθερη μορφή του το ένζυμο εμφάνισε ενδείξεις σύνθεσης γλυκουρονιδίων. Επιπροσθέτως, διερευνήθηκε η φυσιολογική δράση του ενζύμου μέσω απομόνωσης λιγνινο-υδατανθρακικών συμπλόκων (Lignin-Carbohydrate Complexes, LCCs) ως φυσικών υποστρωμάτων εμπλουτισμένα σε εστερικούς δεσμούς-στόχο για τις GEs. Η καταλυτική ενεργότητα της StGE2 αλλά και των ημικυτταρινασών που εξετάστηκαν, αποτελεί ένα βήμα προς τη διαλεύκανση του φυσικού ρόλου των GEs. Τέλος, έλαβαν χώρα κρυσταλλογραφικές μελέτες ακτίνων Χ με πρωτεϊνικούς στόχους την StGE2 και την S213A StGE2 που οδήγησαν στον προσδιορισμό των τρισδιάστατων δομών τους σε υψηλή ευκρίνεια 1.55 Å και 1.9 Å, αντίστοιχα, ενώ κατέστη επιτυχής ο προσδιορισμός της τρισδιάστατης κρυσταλλικής δομής του συμπλόκου S213A – MeGlcA σε ευκρίνεια 2.35 Å. Οι συγκεκριμένες δομές αποτελούν τις πρώτες δομές θερμοάντοχης GE, GE που φέρει σημειακή μετάλλαξη σε καταλυτικό αμινοξύ ενώ αυτή του συμπλόκου αποτέλεσε την πρώτη δομή GE με ανάλογο υποστρώματος.

2014 ◽  
Vol 98 (12) ◽  
pp. 5507-5516 ◽  
Author(s):  
Constantinos Katsimpouras ◽  
Anaïs Bénarouche ◽  
David Navarro ◽  
Michael Karpusas ◽  
Maria Dimarogona ◽  
...  

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Jingen Li ◽  
Shuying Gu ◽  
Zhen Zhao ◽  
Bingchen Chen ◽  
Qian Liu ◽  
...  

Abstract Background Lignocellulosic biomass has long been recognized as a potential sustainable source for industrial applications. The costs associated with conversion of plant biomass to fermentable sugar represent a significant barrier to the production of cost-competitive biochemicals. Consolidated bioprocessing (CBP) is considered a potential breakthrough for achieving cost-efficient production of biomass-based fuels and commodity chemicals. During the degradation of cellulose, cellobiose (major end-product of cellulase activity) is catabolized by hydrolytic and phosphorolytic pathways in cellulolytic organisms. However, the details of the two intracellular cellobiose metabolism pathways in cellulolytic fungi remain to be uncovered. Results Using the engineered malic acid production fungal strain JG207, we demonstrated that the hydrolytic pathway by β-glucosidase and the phosphorolytic pathway by phosphorylase are both used for intracellular cellobiose metabolism in Myceliophthora thermophila, and the yield of malic acid can benefit from the energy advantages of phosphorolytic cleavage. There were obvious differences in regulation of the two cellobiose catabolic pathways depending on whether M. thermophila JG207 was grown on cellobiose or Avicel. Disruption of Mtcpp in strain JG207 led to decreased production of malic acid under cellobiose conditions, while expression levels of all three intracellular β-glucosidase genes were significantly up-regulated to rescue the impairment of the phosphorolytic pathway under Avicel conditions. When the flux of the hydrolytic pathway was reduced, we found that β-glucosidase encoded by bgl1 was the dominant enzyme in the hydrolytic pathway and deletion of bgl1 resulted in significant enhancement of protein secretion but reduction of malate production. Combining comprehensive manipulation of both cellobiose utilization pathways and enhancement of cellobiose uptake by overexpression of a cellobiose transporter, the final strain JG412Δbgl2Δbgl3 produced up to 101.2 g/L and 77.4 g/L malic acid from cellobiose and Avicel, respectively, which corresponded to respective yields of 1.35 g/g and 1.03 g/g, representing significant improvement over the starting strain JG207. Conclusions This is the first report of detailed investigation of intracellular cellobiose catabolism in cellulolytic fungus M. thermophila. These results provide insights that can be applied to industrial fungi for production of biofuels and biochemicals from cellobiose and cellulose.


Genetics ◽  
2002 ◽  
Vol 161 (1) ◽  
pp. 71-81
Author(s):  
Eric Espagne ◽  
Pascale Balhadère ◽  
Marie-Louise Penin ◽  
Christian Barreau ◽  
Béatrice Turcq

Abstract Vegetative incompatibility, which is very common in filamentous fungi, prevents a viable heterokaryotic cell from being formed by the fusion of filaments from two different wild-type strains. Such incompatibility is always the consequence of at least one genetic difference in specific genes (het genes). In Podospora anserina, alleles of the het-e and het-d loci control heterokaryon viability through genetic interactions with alleles of the unlinked het-c locus. The het-d2Y gene was isolated and shown to have strong similarity with the previously described het-e1A gene. Like the HET-E protein, the HET-D putative protein displayed a GTP-binding domain and seemed to require a minimal number of 11 WD40 repeats to be active in incompatibility. Apart from incompatibility specificity, no other function could be identified by disrupting the het-d gene. Sequence comparison of different het-e alleles suggested that het-e specificity is determined by the sequence of the WD40 repeat domain. In particular, the amino acids present on the upper face of the predicted β-propeller structure defined by this domain may confer the incompatible interaction specificity.


Genetics ◽  
1997 ◽  
Vol 145 (3) ◽  
pp. 697-705 ◽  
Author(s):  
Philippe Silar ◽  
France Koll ◽  
Michèle Rossignol

The filamentous fungus Podospora anserina presents a degeneration syndrome called Senescence associated with mitochondrial DNA modifications. We show that mutations affecting the two different and interacting cytosolic ribosomal proteins (S7 and S19) systematically and specifically prevent the accumulation of senDNAα (a circular double-stranded DNA plasmid derived from the first intron of the mitochondrial cox1 gene or intron α) without abolishing Senescence nor affecting the accumulation of other usually observed mitochondrial DNA rearrangements. One of the mutant proteins is homologous to the Escherichia coli S4 and Saccharomyces cerevisiae S13 ribosomal proteins, known to be involved in accuracy control of cytosolic translation. The lack of accumulation of senDNAα seems to result from a nontrivial ribosomal alteration unrelated to accuracy control, indicating that S7 and S19 proteins have an additional function. The results strongly suggest that modified expression of nucleus-encoded proteins contributes to Senescence in P. anserina. These data do not fit well with some current models, which propose that intron α plays the role of the cytoplasmic and infectious Determinant of Senescence that was defined in early studies.


Genetics ◽  
2002 ◽  
Vol 161 (3) ◽  
pp. 1089-1099
Author(s):  
Gwenaël Ruprich-Robert ◽  
Véronique Berteaux-Lecellier ◽  
Denise Zickler ◽  
Arlette Panvier-Adoutte ◽  
Marguerite Picard

Abstract Peroxins (PEX) are proteins required for peroxisome biogenesis. Mutations in PEX genes cause lethal diseases in humans, metabolic defects in yeasts, and developmental disfunctions in plants and filamentous fungi. Here we describe the first large-scale screening for suppressors of a pex mutation. In Podospora anserina, pex2 mutants exhibit a metabolic defect [inability to grow on medium containing oleic acid (OA medium) as sole carbon source] and a developmental defect (inability to differentiate asci in homozygous crosses). Sixty-three mutations able to restore growth of pex2 mutants on OA medium have been analyzed. They fall in six loci (suo1 to suo6) and act as dominant, allele-nonspecific suppressors. Most suo mutations have pleiotropic effects in a pex2+ background: formation of unripe ascospores (all loci except suo5 and suo6), impaired growth on OA medium (all loci except suo4 and suo6), or sexual defects (suo4). Using immunofluorescence and GFP staining, we show that peroxisome biogenesis is partially restored along with a low level of ascus differentiation in pex2 mutant strains carrying either the suo5 or the suo6 mutations. The data are discussed with respect to β-oxidation of fatty acids, peroxisome biogenesis, and cell differentiation.


Genetics ◽  
1998 ◽  
Vol 149 (4) ◽  
pp. 1763-1775 ◽  
Author(s):  
Bénédicte Gagny ◽  
Philippe Silar

Abstract In an attempt to decipher their role in the life history and senescence process of the filamentous fungus Podospora anserina, we have cloned the su1 and su2 genes, previously identified as implicated in cytosolic translation fidelity. We show that these genes are the equivalents of the SUP35 and SUP45 genes of Saccharomyces cerevisiae, which encode the cytosolic translation termination factors eRF3 and eRF1, respectively. Mutations in these genes that suppress nonsense mutations may lead to drastic mycelium morphology changes and sexual impairment but have little effect on life span. Deletion of su1, coding for the P. anserina eRF3, is lethal. Diminution of its expression leads to a nonsense suppressor phenotype whereas its overexpression leads to an antisuppressor phenotype. P. anserina eRF3 presents an N-terminal region structurally related to the yeast eRF3 one. Deletion of the N-terminal region of P. anserina eRF3 does not cause any vegetative alteration; especially life span is not changed. However, it promotes a reproductive impairment. Contrary to what happens in S. cerevisiae, deletion of the N terminus of the protein promotes a nonsense suppressor phenotype. Genetic analysis suggests that this domain of eRF3 acts in P. anserina as a cis-activator of the C-terminal portion and is required for proper reproduction.


2021 ◽  
Vol 9 (8) ◽  
pp. 1581
Author(s):  
Arslan Ali ◽  
Bernhard Ellinger ◽  
Sophie C. Brandt ◽  
Christian Betzel ◽  
Martin Rühl ◽  
...  

Staphylotrichum longicolleum FW57 (DSM105789) is a prolific chitinolytic fungus isolated from wood, with a chitinase activity of 0.11 ± 0.01 U/mg. We selected this strain for genome sequencing and annotation, and compiled its growth characteristics on four different chitinous substrates as well as two agro-industrial waste products. We found that the enzymatic mixture secreted by FW57 was not only able to digest pre-treated sugarcane bagasse, but also untreated sugarcane bagasse and maize leaves. The efficiency was comparable to a commercial enzymatic cocktail, highlighting the potential of the S. longicolleum enzyme mixture as an alternative pretreatment method. To further characterize the enzymes, which efficiently digested polymers such as cellulose, hemicellulose, pectin, starch, and lignin, we performed in-depth mass spectrometry-based secretome analysis using tryptic peptides from in-gel and in-solution digestions. Depending on the growth conditions, we were able to detect from 442 to 1092 proteins, which were annotated to identify from 134 to 224 putative carbohydrate-active enzymes (CAZymes) in five different families: glycoside hydrolases, auxiliary activities, carbohydrate esterases, polysaccharide lyases, glycosyl transferases, and proteins containing a carbohydrate-binding module, as well as combinations thereof. The FW57 enzyme mixture could be used to replace commercial enzyme cocktails for the digestion of agro-residual substrates.


Sign in / Sign up

Export Citation Format

Share Document