scholarly journals Head models of healthy and depressed adults for simulating the effects of non-invasive brain stimulation

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 704 ◽  
Author(s):  
Nya Mehnwolo Boayue ◽  
Gábor Csifcsák ◽  
Oula Puonti ◽  
Axel Thielscher ◽  
Matthias Mittner

During the past decade, it became clear that the effects of non-invasive brain stimulation (NIBS) techniques such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) are substantially influenced by variations in individual head and brain anatomy. In addition to structural variations in the healthy, several psychiatric disorders are characterized by anatomical alterations that are likely to further constrain the intracerebral effects of NIBS. Here, we present high-resolution realistic head models derived from structural magnetic resonance imaging data of 19 healthy adults and 19 patients diagnosed with major depressive disorder (MDD). By using a freely available software package for modelling the effects of different NIBS protocols, we show that our head models are well-suited for assessing inter-individual and between-group variability in the magnitude and focality of tDCS-induced electric fields for two protocols targeting the left dorsolateral prefrontal cortex.

2018 ◽  
Author(s):  
Nya Mehnwolo Boayue ◽  
Gábor Csifcsák ◽  
Oula Puonti ◽  
Axel Thielscher ◽  
Matthias Mittner

During the past decade, it became clear that the electric field elicited by non-invasive brain stimulation (NIBS) techniques such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) are substantially influenced by variations in individual head and brain anatomy. In addition to structural variations in the healthy, several psychiatric disorders are characterized by anatomical alterations that are likely to further constrain the intracerebral effects of NIBS. Here, we present high-resolution realistic head models derived from structural magnetic resonance imaging data of 19 healthy adults and 19 patients diagnosed with major depressive disorder (MDD). By using a freely available software package for modelling the electric fields induced by different NIBS protocols, we show that our head models are well-suited for assessing inter-individual and between-group variability in the magnitude and focality of tDCS-induced electric fields for two protocols targeting the left dorsolateral prefrontal cortex.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 704 ◽  
Author(s):  
Nya Mehnwolo Boayue ◽  
Gábor Csifcsák ◽  
Oula Puonti ◽  
Axel Thielscher ◽  
Matthias Mittner

During the past decade, it became clear that the electric field elicited by non-invasive brain stimulation (NIBS) techniques such as transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation (TMS) are substantially influenced by variations in individual head and brain anatomy. In addition to structural variations in the healthy, several psychiatric disorders are characterized by anatomical alterations that are likely to further constrain the intracerebral effects of NIBS. Here, we present high-resolution realistic head models derived from structural magnetic resonance imaging data of 19 healthy adults and 19 patients diagnosed with major depressive disorder (MDD). By using a freely available software package for modelling the electric fields induced by different NIBS protocols, we show that our head models are well-suited for assessing inter-individual and between-group variability in the magnitude and focality of tDCS-induced electric fields for two protocols targeting the left dorsolateral prefrontal cortex.


2014 ◽  
Vol 10 (1) ◽  
pp. 92-93 ◽  
Author(s):  
Bernardo Dell’Osso ◽  
A. Carlo Altamura

Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are non-invasive brain stimulation techniques that, by means of magnetic fields and low intensity electrical current, respectively, aim to interefere with and modulate cortical excitability, at the level of dorsolateral prefrontal cortex, in patients with major depression and poor response to standard antidepressants. While the clinical efficacy of TMS in major depression has been extensively investigated over the last 10 years, tDCS has attracted research interest only in the last years, with fewer randomized clinical trials (RCTs) in the field. Nevertheless, in spite of the different rationale and mechanism of action of the two techniques, tDCS recent acquisitions, in relation to the treatment of major depression, seem to parallel those previously obtained with TMS, in terms of treatment duration to achieve optimal benefit and patient's history of drug-resistance. After briefly introducing the two techniques, the article examines possible common pathways of clinical use for TMS and tDCS, emerging from recent RCTs and likely orienting future investigation with non invasive brain stimulation for the treatment of major depression.


2012 ◽  
Vol 3 ◽  
Author(s):  
Leonardo Augusto Negreiros Parente Capela Sampaio ◽  
Renerio Fraguas ◽  
Paulo Andrade Lotufo ◽  
Isabela Martins Benseñor ◽  
André Russowsky Brunoni

2019 ◽  
Vol 98 (4) ◽  
pp. 279-289
Author(s):  
Paulo J. C. Suen ◽  
Andre R. Brunoni

Noninvasive brain stimulation therapies are a promising field for the development of new protocols for the treatment of neuropsychiatric disorders. They are based on the stimulation of neural networks with the intent of modeling their synaptic activity to adequate levels. For this, it is necessary to precisely determine which networks are related to which brain functions, and the normal activation level of each of these networks, so that it is possible to direct the stimulation to the affected networks in order to induce the desired effects. These relationships are under intense investigation by the scientific community, and will contribute to the advancement of treatments by neurostimulation, with the emergence of increasingly accurate and effective protocols for different disorders. Currently, the most used techniques are Transcranial Direct Current Stimulation and Transcranial Magnetic Stimulation, with the most common applications being for treating Major Depressive Disorder. The advancement of research in this field may determine new target networks for stimulation in the treatment of other disorders, extending the application of these techniques and also our knowledge about brain functioning.


2020 ◽  
Author(s):  
Ethan T. Whitman ◽  
Siyuan Liu ◽  
Erin Torres ◽  
Allysa Warling ◽  
Kathleen Wilson ◽  
...  

Klinefelter syndrome (47, XXY; Henceforth: XXY syndrome) is a high impact but poorly understood genetic risk factor for neuropsychiatric impairment. Here, we provide the first neuroimaging study to map resting-state functional connectivity (rsFC) changes in XXY syndrome and ask how these might relate to brain anatomy and psychopathology. We collected resting state functional magnetic resonance imaging data from 75 individuals with XXY and 84 healthy XY males. We implemented a brain-wide screen to identify regions with altered global rsFC in XXY vs. XY males, and then used seed-based analysis to decompose these alterations. We further compared rsFC changes with regional changes in brain volume from voxel-based morphometry and tested for correlations between rsFC and symptom variation within XXY syndrome. We found that XXY syndrome was characterized by increased global rsFC in the left dorsolateral prefrontal cortex (DLPFC), associated with overconnectivity with diverse rsFC networks. Regional rsFC changes were partly coupled to regional volumetric changes in XXY syndrome. Within the precuneus, variation in DLPFC rsFC within XXY syndrome was correlated with the severity of psychopathology in XXY individuals. Our findings provide the first view of altered functional brain connectivity in XXY syndrome and delineate links between these alterations and those relating to both brain anatomy and psychopathology. Taken together, these insights advance biological understanding of XXY syndrome as a disorder in its own right, and as a model of genetic risk for psychopathology more broadly.


2019 ◽  
Vol 30 (3) ◽  
pp. 989-1000 ◽  
Author(s):  
Goran Papenberg ◽  
Nina Karalija ◽  
Alireza Salami ◽  
Anna Rieckmann ◽  
Micael Andersson ◽  
...  

Abstract Insufficient or excessive dopaminergic tone impairs cognitive performance. We examine whether the balance between transmitter availability and dopamine (DA) D2 receptors (D2DRs) is important for successful memory performance in a large sample of adults (n = 175, 64–68 years). The Catechol-O-Methyltransferase polymorphism served as genetic proxy for endogenous prefrontal DA availability, and D2DRs in dorsolateral prefrontal cortex (dlPFC) were measured with [11C]raclopride-PET. Individuals for whom D2DR status matched DA availability showed higher levels of episodic and working-memory performance than individuals with insufficient or excessive DA availability relative to the number of receptors. A similar pattern restricted to episodic memory was observed for D2DRs in caudate. Functional magnetic resonance imaging data acquired during working-memory performance confirmed the importance of a balanced DA system for load-dependent brain activity in dlPFC. Our data suggest that the inverted-U–shaped function relating DA signaling to cognition is modulated by a dynamic association between DA availability and receptor status.


2019 ◽  
Vol 238 (1) ◽  
pp. 1-16
Author(s):  
Zaira Cattaneo

AbstractDuring the last decade, non-invasive brain stimulation techniques have been increasingly employed in the field of neuroaesthetics research to shed light on the possible causal role of different brain regions contributing to aesthetic appreciation. Here, I review studies that have employed transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to investigate neurocognitive mechanisms mediating visual aesthetic appreciation for different stimuli categories (faces, bodies, paintings). The review first considers studies that have assessed the possible causal contribution of cortical regions in mediating aesthetic appreciation along the visual ventral and dorsal pathways (i.e., the extrastriate body area, the motion-sensitive region V5/MT+ , the lateral occipital complex and the posterior parietal cortex). It then considers TMS and tDCS studies that have targeted premotor and motor regions, as well as other areas involved in body and facial expression processing (such as the superior temporal sulcus and the somatosensory cortex) to assess their role in aesthetic evaluation. Finally, it discusses studies that have targeted medial and dorsolateral prefrontal regions leading to significant changes in aesthetic appreciation for both biological stimuli (faces and bodies) and artworks. Possible mechanisms mediating stimulation effects on aesthetic judgments are discussed. A final section considers both methodological limitations of the reviewed studies (including levels of statistical power and the need for further replication) and the future potential for non-invasive brain stimulation to significantly contribute to the understanding of the neural bases of visual aesthetic experiences.


Sign in / Sign up

Export Citation Format

Share Document