scholarly journals Identification of potential inhibitors of SARS-CoV-2 S protein–ACE2 interaction by in silico drug repurposing

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 358
Author(s):  
Fabiola E Tristán-Flores ◽  
Diana Casique-Aguirre ◽  
Raquel Pliego-Arreaga ◽  
Juan A Cervantes-Montelongo ◽  
Ponciano García-Gutierrez ◽  
...  

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new coronavirus discovered that appeared in Wuhan, China, in December 2019, causes COVID-19 disease which have resulted in cases similar to SARS-atypical pneumonia. Worldwide, around 116 million cases and 2.57 million deaths are reported with new cases and increasing mortality every day. To date, there is no specific commercial treatment to control the infection. Repurpose drugs targeting the angiotensin-converting enzyme 2 (ACE2) receptor represents an alternative strategy to block the binding of SARS-CoV-2 protein S and forestall virus adhesion, internalization, and replication in the host cell. Methods: We performed a rigid molecular docking using the receptor binding domain of the S1 subunit of S protein (RBD S1)-ACE2 (PDB ID: 6VW1) interaction site and 1,283 drugs FDA approved. The docking score, frequency of the drug in receptor site, and interactions at the binding site residues were used as analyzing criteria. Results: This research yielded 40 drugs identified as a potential inhibitor of RBD S1-ACE2 interaction. Among the inhibitors, compounds such as ipratropium, formoterol, and fexofenadine can be found. Specialists employ these drugs as therapies to treat chronic obstructive pulmonary disease, asthma and virtually any respiratory infection. Conclusions: Our results will serve as the basis for in vitro and in vivo studies to evaluate the potential use of those drugs to generate affordable and convenient therapies to treat COVID-19.

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 358
Author(s):  
Fabiola E Tristán-Flores ◽  
Diana Casique-Aguirre ◽  
Raquel Pliego-Arreaga ◽  
Juan A Cervantes-Montelongo ◽  
Ponciano García-Gutierrez ◽  
...  

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new coronavirus discovered that appeared in Wuhan, China, in December 2019, causes COVID-19 disease which have resulted in cases similar to SARS-atypical pneumonia. As of March 1, 2021, Mexico had reached 2.11 million cases of COVID-19 and 189 thousand deaths; around 116 million cases and 2.57 million deaths are reported worldwide with new cases and increasing mortality every day. To date, there is no specific commercial treatment to control the infection. Repurpose drugs targeting the angiotensin-converting enzyme 2 (ACE2) receptor represents an alternative strategy to block the binding of SARS-CoV-2 protein S and forestall virus adhesion, internalization and replication in the host cell. Methods: Rigid molecular docking was performed using receptor binding domain of the S1 subunit of S protein (RBDS1)-ACE2 (PDB ID: 6VW1) interaction site and 1,283 drugs FDA approved and prescribed by the Mexican Public Health System. The results were analyzed by docking score, frequency of the drug in receptor site and the types of interactions at the binding site residues. Results: About 40 drugs were identified as a potential inhibitor of RBDS1-ACE2 interaction. Within the top-ranked drugs, we identified ipratropium, formoterol and fexofenadine, which stands out as they are used as therapies to treat chronic obstructive pulmonary disease, asthma and virtually any respiratory infection. Conclusions: Our results will serve as the basis for in vitro and in vivo studies to evaluate the potential use of those drugs to generate affordable and convenient therapies to treat COVID-19.


2021 ◽  
Vol 12 ◽  
Author(s):  
Jomkuan Theprungsirikul ◽  
Sladjana Skopelja-Gardner ◽  
Ashley S. Burns ◽  
Rachel M. Wierzbicki ◽  
William F. C. Rigby

Chronic Pseudomonas aeruginosa infection mysteriously occurs in the airways of patients with cystic fibrosis (CF), bronchiectasis (BE), and chronic obstructive pulmonary disease (COPD) in the absence of neutrophil dysfunction or neutropenia and is strongly associated with autoimmunity to bactericidal permeability-increasing protein (BPI). Here, we define a critical role for BPI in in vivo immunity against P. aeruginosa. Wild type and BPI-deficient (Bpi-/-) mice were infected with P. aeruginosa, and bacterial clearance, cell infiltrates, cytokine production, and in vivo phagocytosis were quantified. Bpi-/- mice exhibited a decreased ability to clear P. aeruginosa in vivo in concert with increased neutrophil counts and cytokine release. Bpi-/- neutrophils displayed decreased phagocytosis that was corrected by exogenous BPI in vitro. Exogenous BPI also enhanced clearance of P. aeruginosa in Bpi-/- mice in vivo by increasing P. aeruginosa uptake by neutrophils in a CD18-dependent manner. These data indicate that BPI plays an essential role in innate immunity against P. aeruginosa through its opsonic activity and suggest that perturbations in BPI levels or function may contribute to chronic lung infection with P. aeruginosa.


2015 ◽  
Vol 46 (3) ◽  
pp. 771-782 ◽  
Author(s):  
Antoine Guillon ◽  
Youenn Jouan ◽  
Deborah Brea ◽  
Fabien Gueugnon ◽  
Emilie Dalloneau ◽  
...  

Chronic obstructive pulmonary disease (COPD) is punctuated by episodes of infection-driven acute exacerbations. Despite the life-threatening nature of these exacerbations, the underlying mechanisms remain unclear, although a high number of neutrophils in the lungs of COPD patients is known to correlate with poor prognosis. Interleukin (IL)-22 is a cytokine that plays a pivotal role in lung antimicrobial defence and tissue protection. We hypothesised that neutrophils secrete proteases that may have adverse effects in COPD, by altering the IL-22 receptor (IL-22R)-dependent signalling.Using in vitro and in vivo approaches as well as reverse transcriptase quantitative PCR, flow cytometry and/or Western blotting techniques, we first showed that pathogens such as the influenza virus promote IL-22R expression in human bronchial epithelial cells, whereas Pseudomonas aeruginosa, bacterial lipopolysaccharide or cigarette smoke do not. Most importantly, neutrophil proteases cleave IL-22R and impair IL-22-dependent immune signalling and expression of antimicrobial effectors such as β-defensin-2. This proteolysis resulted in the release of a soluble fragment of IL-22R, which was detectable both in cellular and animal models as well as in sputa from COPD patients with acute exacerbations.Hence, our study reveals an unsuspected regulation by the proteolytic action of neutrophil enzymes of IL-22-dependent lung host response. This process probably enhances pathogen replication, and ultimately COPD exacerbations.


2019 ◽  
Author(s):  
Hung-Jen Chen ◽  
Andrew Y.F. Li Yim ◽  
Guillermo R. Griffith ◽  
Wouter J. de Jonge ◽  
Marcel M.A.M. Mannens ◽  
...  

AbstractMacrophages are heterogeneous multifunctional leukocytes which are regulated in a tissue-and disease-specific context. Many different studies have been published using in vitro macrophage models to study disease. Here, we aggregated public expression data to define consensus expression profiles for eight commonly-used in vitro macrophage models. Altogether, we observed well-known but also novel markers for different macrophage subtypes. Using these data we subsequently built the classifier macIDR, capable of distinguishing macrophage subsets with high accuracy (>0.95). This classifier was subsequently applied to transcriptional profiles of tissue-isolated and disease-associated macrophages to specifically define macrophage characteristics in vivo. Classification of these in vivo macrophages showed that alveolar macrophages displayed high resemblance to interleukin-10 activated macrophages, whereas macrophages from patients with chronic obstructive pulmonary disease patients displayed a drop in interferon-γ signature. Adipose tissue-derived macrophages were classified as unstimulated macrophages, but resembled LPS-activated macrophages more in diabetic-obese patients. Finally, rheumatoid arthritic synovial macrophages showed characteristics of both interleukin-10 or interferon-γ signatures. Altogether, our results suggest that macIDR is capable of identifying macrophage-specific changes as a result of tissue-and disease-specific stimuli and thereby can be used to better define and model populations of macrophages that contribute to disease.


MAP Kinase ◽  
2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Li Xing

The trigger and etiology of chronic inflammatory diseases are not well understood, hindering the development of efficient therapeutic approaches. The observation that abnormal activity of the p38 MAPK is common to all inflammatory diseases raised the expectation that p38 inhibitors would serve as general anti-inflammatory therapeutics. A large number of inhibitors were consequently discovered. Several compounds of different scaffolds, blocking the p38 MAPK signaling pathway, have entered phase II clinical trials for rheumatoid arthritis, chronic obstructive pulmonary disease, pain, cardiovascular diseases, and cancer. As I review here, in almost all cases the clinical trials have failed, leading to re-design of compounds and re-evaluation of p38 as a suitable target. I describe how structural features, unique to p38<span>α</span>, have been employed in the inhibitor design and achieved high degree of kinome selectivity. I then focus on some of the drugs that reached human trials and summarize their <em>in vitro/in vivo</em> pharmacological profiles and the related outcomes from clinical investigations. These compounds include VX-745, VX-702, RO-4402257, SCIO- 469, BIRB-796, SD-0006, PH-797804, AMG-548, LY2228820, SB-681323 and GW-856553. Finally, I discuss novel suggested approaches for the use of p38 inhibitors such as combining p38 inhibition with inhibiting other targets that function in parallel inflammatory pathways for achieving efficacy in treating inflammatory diseases.


Viruses ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 776 ◽  
Author(s):  
Keunsoo Kang ◽  
Hoo Hyun Kim ◽  
Yoonjung Choi

The coronavirus disease 2019 (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects almost everyone in the world in many ways. We previously predicted antivirals (atazanavir, remdesivir and lopinavir/ritonavir) and non-antiviral drugs (tiotropium and rapamycin) that may inhibit the replication complex of SARS-CoV-2 using our molecular transformer–drug target interaction (MT–DTI) deep-learning-based drug–target affinity prediction model. In this study, we dissected molecular pathways upregulated in SARS-CoV-2-infected normal human bronchial epithelial (NHBE) cells by analyzing an RNA-seq data set with various bioinformatics approaches, such as gene ontology, protein–protein interaction-based network and gene set enrichment analyses. The results indicated that the SARS-CoV-2 infection strongly activates TNF and NFκB-signaling pathways through significant upregulation of the TNF, IL1B, IL6, IL8, NFKB1, NFKB2 and RELB genes. In addition to these pathways, lung fibrosis, keratinization/cornification, rheumatoid arthritis, and negative regulation of interferon-gamma production pathways were also significantly upregulated. We observed that these pathologic features of SARS-CoV-2 are similar to those observed in patients with chronic obstructive pulmonary disease (COPD). Intriguingly, tiotropium, as predicted by MT–DTI, is currently used as a therapeutic intervention in COPD patients. Treatment with tiotropium has been shown to improve pulmonary function by alleviating airway inflammation. Accordingly, a literature search summarized that tiotropium reduced expressions of IL1B, IL6, IL8, RELA, NFKB1 and TNF in vitro or in vivo, and many of them have been known to be deregulated in COPD patients. These results suggest that COVID-19 is similar to an acute mode of COPD caused by the SARS-CoV-2 infection, and therefore tiotropium may be effective for COVID-19 patients.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Ewa Pniewska ◽  
Rafal Pawliczak

The increased morbidity, mortality, and ineffective treatment associated with the pathogenesis of chronic inflammatory diseases such as asthma and chronic obstructive pulmonary disease (COPD) have generated much research interest. The key role is played by phospholipases from the A2superfamily: enzymes which are involved in inflammation through participation in pro- and anti-inflammatory mediators production and have an impact on many immunocompetent cells. The 30 members of the A2superfamily are divided into 7 groups. Their role in asthma and COPD has been studiedin vitroandin vivo(animal models, cell cultures, and patients). This paper contains complete and updated information about the involvement of particular enzymes in the etiology and course of asthma and COPD.


Sign in / Sign up

Export Citation Format

Share Document