scholarly journals Psoriasis is characterized by deficient negative immune regulation compared to transient delayed-type hypersensitivity reactions

F1000Research ◽  
2015 ◽  
Vol 4 ◽  
pp. 149 ◽  
Author(s):  
Nicholas Gulati ◽  
Mayte Suárez-Fariñas ◽  
Joel Correa da Rosa ◽  
James G. Krueger

Diphencyprone (DPCP) is a hapten that causes delayed-type hypersensitivity (DTH) reactions in human skin, and is used as a topical therapeutic for alopecia areata, warts, and cutaneous melanoma metastases.  We examined peak DTH reactions induced by DPCP (3 days post-challenge) by comprehensive gene expression and histological analysis.  To better understand how these DTH reactions naturally resolve, we compared our DPCP biopsies to those from patients with psoriasis vulgaris, a chronic inflammatory disease that does not resolve.  By both microarray and qRT-PCR, we found that psoriasis lesional skin has significantly lower expression of many negative immune regulators compared to peak DPCP reactions.  These regulators include: interleukin-10, cytotoxic T lymphocyte-associated 4 (CTLA4), programmed cell death 1 (PD1), programmed cell death 1 ligand 1 (PDL1), programmed cell death 1 ligand 2 (PDL2), and indoleamine 2,3-dioxygenase (IDO1).  Their decreased expression was confirmed at the protein level by immunohistochemistry.  To more completely determine the balance of positive vs. negative immune regulators in both DPCP reactions and psoriasis, we developed one comprehensive gene list for positive regulatory (inflammatory) genes, and another for negative regulatory (immunosuppressive) genes, through Gene Ontology terms and literature review.  With this approach, we found that DPCP reactions have a higher ratio of negative to positive regulatory genes (both in terms of quantity and expression levels) than psoriasis lesional skin.  These data suggest that the disease chronicity that distinguishes psoriasis from transient DTH reactions may be related to absence of negative immune regulatory pathways, and induction of these is therefore of therapeutic interest.  Further study of these negative regulatory mechanisms that are present in DPCP reactions, but not in psoriasis, could reveal novel players in the pathogenesis of chronic inflammation.  The DPCP system used here thus provides a tractable model for primary discovery of pathways potentially involved in immune regulation in peripheral tissues.

Author(s):  
Lifang Zhang ◽  
Yu Zhao ◽  
Quanmei Tu ◽  
Xiangyang Xue ◽  
Xueqiong Zhu ◽  
...  

Background: Cervical cancer induced by infection with human papillomavirus (HPV) remains a leading cause of mortality for women worldwide although preventive vaccines and early diagnosis have reduced morbidity and mortality. Advanced cervical cancer can only be treated with either chemotherapy or radiotherapy but outcomes are poor. The median survival for advanced cervical cancer patients is only 16.8 months. Methods: We undertook a structural search of peer-reviewed published studies based on 1). Characteristics of programmed cell death ligand-1/programmed cell death-1(PD-L1/PD-1) expression in cervical cancer and upstream regulatory signals of PD-L1/PD-1 expression, 2). The role of the PD-L1/PD-1 axis in cervical carcinogenesis induced by HPV infection and 3). Whether the PD-L1/PD-1 axis has emerged as a potential target for cervical cancer therapies. Results: One hundred and twenty-six published papers were included in the review, demonstrating that expression of PD-L1/PD-1 is associated with HPV-caused cancer, especially with HPV 16 and 18 which account for approximately 70% of cervical cancer cases. HPV E5/E6/E7 oncogenes activate multiple signaling pathways including PI3K/AKT, MAPK, hypoxia-inducible factor 1α, STAT3/NF-kB and MicroRNAs, which regulate PD-L1/PD-1 axis to promote HPV-induced cervical carcinogenesis. The PD-L1/PD-1 axis plays a crucial role in immune escape of cervical cancer through inhibition of host immune response. creating an "immune-privileged" site for initial viral infection and subsequent adaptive immune resistance, which provides a rationale for therapeutic blockade of this axis in HPV-positive cancers. Currently, Phase I/II clinical trials evaluating the effects of PD-L1/PD-1 targeted therapies are in progress for cervical carcinoma, which provide an important opportunity for the application of anti-PD-L1/anti-PD-1 antibodies in cervical cancer treatment. Conclusion: Recent research developments have led to an entirely new class of drugs using antibodies against the PD-L1/PD-1 thus promoting the body’s immune system to fight the cancer. The expression and roles of the PD-L1/ PD-1 axis in the progression of cervical cancer provide great potential for using PD-L1/PD-1 antibodies as a targeted cancer therapy.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nghiem Xuan Hoan ◽  
Pham Thi Minh Huyen ◽  
Mai Thanh Binh ◽  
Ngo Tat Trung ◽  
Dao Phuong Giang ◽  
...  

AbstractThe inhibitory effects of programmed cell death 1/programmed cell death ligand 1 (PD-1/PD-L1) modulates T-cell depletion. T-cell depletion is one of the key mechanisms of hepatitis B virus (HBV) persistence, in particular liver disease progression and the development of hepatocellular carcinoma (HCC). This case–control study aimed to understand the significance of PD-1 polymorphisms (PD-1.5 and PD-1.9) association with HBV infection risk and HBV-induced liver disease progression. Genotyping of PD-1.5 and PD-1.9 variants was performed by direct Sanger sequencing in 682 HBV-infected patients including chronic hepatitis (CHB, n = 193), liver cirrhosis (LC, n = 183), hepatocellular carcinoma (HCC, n = 306) and 283 healthy controls (HC). To analyze the association of PD-1 variants with liver disease progression, a binary logistic regression, adjusted for age and gender, was performed using different genetic models. The PD-1.9 T allele and PD-1.9 TT genotype are significantly associated with increased risk of LC, HCC, and LC + HCC. The frequencies of PD-1.5 TT genotype and PD-1.5 T allele are significantly higher in HCC compared to LC patients. The haplotype CT (PD-1.5 C and PD-1.9 T) was significantly associated with increased risk of LC, HCC, and LC + HCC. In addition, the TC (PD-1.5 T and PD-1.9 C) haplotype was associated with the risk of HCC compared to non-HCC. The PD-1.5 CC, PD-1.9 TT, genotype, and the CC (PD-1.5 C and PD-1.9) haplotype are associated with unfavorable laboratory parameters in chronic hepatitis B patients. PD-1.5 and PD1.9 are useful prognostic predictors for HBV infection risk and liver disease progression.


Sign in / Sign up

Export Citation Format

Share Document