scholarly journals Molecular characterization and genetic diversity of four undescribed novel oleaginous Mortierella alpina strains from Libya

F1000Research ◽  
2021 ◽  
Vol 10 ◽  
pp. 895
Author(s):  
Fuzia Elfituri Muftah Eltariki ◽  
Kartikeya Tiwari ◽  
Mohammed Abdelfatah Alhoot

Background: A large number of undiscovered fungal species still exist on earth, which can be useful for bioprospecting, particularly for single cell oil (SCO) production. Mortierella is one of the significant genera in this field and contains about hundred species. Moreover, M. alpina is the main single cell oil producer at commercial scale under this genus. Methods: Soil samples from four unique locations of North-East Libya were collected for the isolation of oleaginous Mortierella alpina strains by a serial dilution method. Morphological identification was carried out using light microscopy (Olympus, Japan) and genetic diversity of the isolated Mortierella alpina strains was assessed using conserved internal transcribed spacer (ITS) gene sequences available on the NCBI GenBank database for the confirmation of novelty. The nucleotide sequences reported in this study have been deposited at GenBank (accession no. MZ298831:MZ298835). The MultAlin program was used to align the sequences of closely related strains. The DNA sequences were analyzed for phylogenetic relationships by molecular evolutionary genetic analysis using MEGA X software consisting of Clustal_X v.2.1 for multiple sequence alignment. The neighbour-joining tree was constructed using the Kimura 2-parameter substitution model. Results: The present research study confirms four oleaginous fungal isolates from Libyan soil. These isolates (barcoded as MSU-101, MSU-201, MSU-401 and MSU-501) were discovered and reported for the first time from diverse soil samples of district Aljabal Al-Akhdar in North-East Libya and fall in the class: Zygomycetes; order: Mortierellales. Conclusions: Four oleaginous fungal isolates barcoded as MSU-101, MSU-201, MSU-401 and MSU-501 were identified and confirmed by morphological and molecular analysis. These fungal isolates showed highest similarity with Mortierella alpina species and can be potentialistic single cell oil producers. Thus, the present research study provides insight to the unseen fungal diversity and contributes to more comprehensive Mortierella alpina reference collections worldwide.

2021 ◽  
Author(s):  
Fuzia Elfituri Muftah Eltariki ◽  
Kartikeya Tiwari ◽  
Mohammed Abdelfatah Alhoot

Abstract A large number of undiscovered fungal species still exist on earth, which can be useful for the bioprospecting particularly the single cell oil (SCO) production. The present research study confirms four oleaginous fungal isolates from Libyan soil. These isolates (Barcoded as MSU-101, MSU-201, MSU-401 and MSU-501) were discovered and reported first time from diverse soil samples of district Aljabal Al-Akhdar in North-East Libya and fall in the class: Zygomycetes; order: Mortierellales. From the morphological and phylogenetic analysis, these isolates were identified and found as closest match with Mortierella alpina species. The present research study provides insight to the unseen fungal diversity and contributes to more comprehensive Mortierella alpina reference collections worldwide.


2009 ◽  
Vol 144 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Eiji Sakuradani ◽  
Sakayu Shimizu

1995 ◽  
Vol 31 (12) ◽  
pp. 267-273 ◽  
Author(s):  
B. S. O. Ceballos ◽  
A. Konig ◽  
B. Lomans ◽  
A. B. Athayde ◽  
H. W. Pearson

A single full-scale primary facultative pond in Sapé, north-east Brazil was monitored for performance and efficiency. The pond had a hydraulic retention time of 61 days and achieved a 95% BOD5 removal efficiency and had no helminth eggs in the effluent. The effluent failed to meet the WHO faecal coliform guideline for unrestricted irrigation. The pond was dominated by the cyanobacterium Microcystis and gave better than predicted orthophosphate removal. Details of how the system could be simply upgraded utilizing the same land are discussed.


Fuel ◽  
2019 ◽  
Vol 254 ◽  
pp. 115653 ◽  
Author(s):  
Sheetal Bandhu ◽  
Neha Bansal ◽  
Diptarka Dasgupta ◽  
Vivek Junghare ◽  
Arushdeep Sidana ◽  
...  

2020 ◽  
pp. 124635
Author(s):  
Nicola Di Fidio ◽  
Giorgio Ragaglini ◽  
Federico Dragoni ◽  
Claudia Antonetti ◽  
Anna Maria Raspolli Galletti

Sign in / Sign up

Export Citation Format

Share Document