scholarly journals H3K36me3 and PSIP1/LEDGF associate with several DNA repair proteins, suggesting their role in efficient DNA repair at actively transcribing loci

2021 ◽  
Vol 2 ◽  
pp. 83
Author(s):  
Jayakumar Sundarraj ◽  
Gillian C.A. Taylor ◽  
Alex von Kriegsheim ◽  
Madapura M Pradeepa

Background: Trimethylation at histone H3 at lysine 36 (H3K36me3) is associated with expressed gene bodies and recruit proteins implicated in transcription, splicing and DNA repair. PC4 and SF2 interacting protein (PSIP1/LEDGF) is a transcriptional coactivator, possesses an H3K36me3 reader PWWP domain. Alternatively spliced isoforms of PSIP1 binds to H3K36me3 and suggested to function as adaptor proteins to recruit transcriptional modulators, splicing factors and proteins that promote homology-directed repair (HDR), to H3K36me3 chromatin. Methods: We performed chromatin immunoprecipitation of H3K36me3 followed by quantitative mass spectrometry (qMS) to identify proteins associated with H3K36 trimethylated chromatin in mouse embryonic stem cells (mESCs). We also performed stable isotope labelling with amino acids in cell culture (SILAC) followed by qMS for a longer isoform of PSIP1 (PSIP/p75) and MOF/KAT8 in mESCs and mouse embryonic fibroblasts ( MEFs). Furthermore, immunoprecipitation followed by western blotting was performed to validate the qMS data. DNA damage in PSIP1 knockout MEFs was assayed by a comet assay. Results: Proteomic analysis shows the association of proteins involved in transcriptional elongation, RNA processing and DNA repair with H3K36me3 chromatin. Furthermore, we show DNA repair proteins like PARP1, gamma H2A.X, XRCC1, DNA ligase 3, SPT16, Topoisomerases and BAZ1B are predominant interacting partners of PSIP /p75. We further validated the association of PSIP/p75 with PARP1, hnRNPU and gamma H2A.X  and also demonstrated accumulation of damaged DNA in PSIP1 knockout MEFs. Conclusions: In contrast to the previously demonstrated role of H3K36me3 and PSIP/p75 in promoting homology-directed repair (HDR), our data support a wider role of H3K36me3 and PSIP1 in maintaining the genome integrity by recruiting proteins involved in DNA damage response pathways to the actively transcribed loci.

2021 ◽  
Vol 2 ◽  
pp. 83
Author(s):  
Jayakumar Sundarraj ◽  
Gillian C.A. Taylor ◽  
Alex von Kriegsheim ◽  
Madapura M Pradeepa

Background: Trimethylation at histone H3 at lysine 36 (H3K36me3) is associated with expressed gene bodies and recruit proteins implicated in transcription, splicing and DNA repair. PC4 and SF2 interacting protein (PSIP1/LEDGF) is a transcriptional coactivator, possesses an H3K36me3 reader PWWP domain. Alternatively spliced isoforms of PSIP1 binds to H3K36me3 and suggested to function as adaptor proteins to recruit transcriptional modulators, splicing factors and proteins that promote homology-directed repair (HDR), to H3K36me3 chromatin. Methods: We performed chromatin immunoprecipitation of H3K36me3 followed by quantitative mass spectrometry (qMS) to identify proteins associated with H3K36 trimethylated chromatin in mouse embryonic stem cells (mESCs). We also performed stable isotope labelling with amino acids in cell culture (SILAC) followed by qMS for a longer isoform of PSIP1 (PSIP/p75) and MOF/KAT8 in mESCs and mouse embryonic fibroblasts ( MEFs). Furthermore, immunoprecipitation followed by western blotting was performed to validate the qMS data. DNA damage in PSIP1 knockout MEFs was assayed by a comet assay. Results: Proteomic analysis shows the association of proteins involved in transcriptional elongation, RNA processing and DNA repair with H3K36me3 chromatin. Furthermore, we show DNA repair proteins like PARP1, gamma H2A.X, XRCC1, DNA ligase 3, SPT16, Topoisomerases and BAZ1B are predominant interacting partners of PSIP /p75. We further validated the association of PSIP/p75 with PARP1, hnRNPU and gamma H2A.X  and also demonstrated accumulation of damaged DNA in PSIP1 knockout MEFs. Conclusions: In contrast to the previously demonstrated role of H3K36me3 and PSIP/p75 in promoting homology-directed repair (HDR), our data support a wider role of H3K36me3 and PSIP1 in maintaining the genome integrity by recruiting proteins involved in DNA damage response pathways to the actively transcribed loci.


2017 ◽  
Vol 2 ◽  
pp. 83
Author(s):  
Madapura M. Pradeepa ◽  
Gillian C.A. Taylor ◽  
Alex von Kriegsheim

Background: Trimethylation at histone H3 at lysine 36 (H3K36me3) is associated with expressed gene bodies and recruit proteins implicated in transcription, splicing and DNA repair. PC4 and SF2 interacting protein (PSIP1/LEDGF) is a transcriptional coactivator, possesses a  H3K36me3 reader PWWP domain. Alternatively spliced isoforms of PSIP1 binds to H3K36me3 and suggested to function as adaptor proteins to recruit transcriptional modulators, splicing factors and proteins that promote homology directed repair (HDR), to H3K36me3 chromatin. Methods: We performed chromatin immunoprecipitation of H3K36me3 followed by quantitative mass spectrometry to identify proteins associated with H3K36 trimethylated chromatin in mouse embryonic stem cells (mESCs). Furthermore, we performed stable isotope labelling with amino acids in cell culture (SILAC) for a longer isoform of PSIP1 (p75) and MOF/KAT8 in mESCs and mouse embryonic fibroblasts (MEFS). Results: Proteomic analysis of H3K36me3 chromatin show association of proteins involved in transcriptional elongation, RNA processing and DNA repair with H3K36me3 chromatin. Furthermore, we show DNA repair proteins like PARP1, gamma H2A.X, XRCC1, DNA ligase 3, SPT16, Topoisomerases and BAZ1B are predominant interacting partners of PSIP1/p75. We validated the association of PSIP1/p75 with gamma H2A.X, an early marker of DNA damage and also demonstrated accumulation of damaged DNA in PSIP1 knockout MEFs. Conclusions: In contrast to the previously demonstrated role of H3K36me3 and PSIP1/p75 in promoting HDR in mammals, our data supports the wider role of H3K36me3 and PSIP1 in maintaining the genome integrity by recruiting several DNA repair proteins to transcribed gene bodies.


2017 ◽  
Vol 2 ◽  
pp. 83
Author(s):  
Madapura M. Pradeepa ◽  
Gillian C.A. Taylor ◽  
Alex von Kriegsheim

Background: Trimethylation at histone H3 at lysine 36 (H3K36me3) is associated with expressed gene bodies and recruit proteins implicated in transcription, splicing and DNA repair. PC4 and SF2 interacting protein (PSIP1/LEDGF) is a transcriptional coactivator, possesses a  H3K36me3 reader PWWP domain. Alternatively spliced isoforms of PSIP1 binds to H3K36me3 and suggested to function as adaptor proteins to recruit transcriptional modulators, splicing factors and proteins that promote homology directed repair (HDR), to H3K36me3 chromatin. Methods: We performed chromatin immunoprecipitation of H3K36me3 followed by quantitative mass spectrometry to identify proteins associated with H3K36 trimethylated chromatin in mouse embryonic stem cells (mESCs). Furthermore, we performed stable isotope labelling with amino acids in cell culture (SILAC) for a longer isoform of PSIP1 (p75) and MOF/KAT8 in mESCs and mouse embryonic fibroblasts (MEFS). Results: Proteomic analysis of H3K36me3 chromatin show association of proteins involved in transcriptional elongation, RNA processing and DNA repair with H3K36me3 chromatin. Furthermore, we show DNA repair proteins like PARP1, gamma H2A.X, XRCC1, DNA ligase 3, SPT16, Topoisomerases and BAZ1B are predominant interacting partners of PSIP1/p75. We validated the association of PSIP1/p75 with gamma H2A.X, an early marker of DNA damage and also demonstrated accumulation of damaged DNA in PSIP1 knockout MEFs. Conclusions: In contrast to the previously demonstrated role of H3K36me3 and PSIP1/p75 in promoting HDR in mammals, our data supports the wider role of H3K36me3 and PSIP1 in maintaining the genome integrity by recruiting several DNA repair proteins to transcribed gene bodies.


Cancers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 4818
Author(s):  
Jacqueline Nathansen ◽  
Felix Meyer ◽  
Luise Müller ◽  
Marc Schmitz ◽  
Kerstin Borgmann ◽  
...  

Cancer stem cells (CSCs) are pluripotent and highly tumorigenic cells that can re-populate a tumor and cause relapses even after initially successful therapy. As with tissue stem cells, CSCs possess enhanced DNA repair mechanisms. An active DNA damage response alleviates the increased oxidative and replicative stress and leads to therapy resistance. On the other hand, mutations in DNA repair genes cause genomic instability, therefore driving tumor evolution and developing highly aggressive CSC phenotypes. However, the role of DNA repair proteins in CSCs extends beyond the level of DNA damage. In recent years, more and more studies have reported the unexpected role of DNA repair proteins in the regulation of transcription, CSC signaling pathways, intracellular levels of reactive oxygen species (ROS), and epithelial–mesenchymal transition (EMT). Moreover, DNA damage signaling plays an essential role in the immune response towards tumor cells. Due to its high importance for the CSC phenotype and treatment resistance, the DNA damage response is a promising target for individualized therapies. Furthermore, understanding the dependence of CSC on DNA repair pathways can be therapeutically exploited to induce synthetic lethality and sensitize CSCs to anti-cancer therapies. This review discusses the different roles of DNA repair proteins in CSC maintenance and their potential as therapeutic targets.


Cells ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1980
Author(s):  
Ibrahim M. Sayed ◽  
Anirban Chakraborty ◽  
Amer Ali Abd El-Hafeez ◽  
Aditi Sharma ◽  
Ayse Z. Sahan ◽  
...  

Colorectal cancer (CRC) is the third most prevalent cancer, while the majority (80–85%) of CRCs are sporadic and are microsatellite stable (MSS), and approximately 15–20% of them display microsatellite instability (MSI). Infection and chronic inflammation are known to induce DNA damage in host tissues and can lead to oncogenic transformation of cells, but the role of DNA repair proteins in microbe-associated CRCs remains unknown. Using CRC-associated microbes such as Fusobacterium nucleatum (Fn) in a coculture with murine and human enteroid-derived monolayers (EDMs), here, we show that, among all the key DNA repair proteins, NEIL2, an oxidized base-specific DNA glycosylase, is significantly downregulated after Fn infection. Fn infection of NEIL2-null mouse-derived EDMs showed a significantly higher level of DNA damage, including double-strand breaks and inflammatory cytokines. Several CRC-associated microbes, but not the commensal bacteria, induced the accumulation of DNA damage in EDMs derived from a murine CRC model, and Fn had the most pronounced effect. An analysis of publicly available transcriptomic datasets showed that the downregulation of NEIL2 is often encountered in MSS compared to MSI CRCs. We conclude that the CRC-associated microbe Fn induced the downregulation of NEIL2 and consequent accumulation of DNA damage and played critical roles in the progression of CRCs.


1999 ◽  
Vol 27 (16) ◽  
pp. 3276-3282 ◽  
Author(s):  
P. P. H. Van Sloun ◽  
J. G. Jansen ◽  
G. Weeda ◽  
L. H. F. Mullenders ◽  
A. A. van Zeeland ◽  
...  

Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1375-1387
Author(s):  
Emmanuelle M D Martini ◽  
Scott Keeney ◽  
Mary Ann Osley

Abstract To investigate the role of the nucleosome during repair of DNA damage in yeast, we screened for histone H2B mutants that were sensitive to UV irradiation. We have isolated a new mutant, htb1-3, that shows preferential sensitivity to UV-C. There is no detectable difference in bulk chromatin structure or in the number of UV-induced cis-syn cyclobutane pyrimidine dimers (CPD) between HTB1 and htb1-3 strains. These results suggest a specific effect of this histone H2B mutation in UV-induced DNA repair processes rather than a global effect on chromatin structure. We analyzed the UV sensitivity of double mutants that contained the htb1-3 mutation and mutations in genes from each of the three epistasis groups of RAD genes. The htb1-3 mutation enhanced UV-induced cell killing in rad1Δ and rad52Δ mutants but not in rad6Δ or rad18Δ mutants, which are defective in postreplicational DNA repair (PRR). When combined with other mutations that affect PRR, the histone mutation increased the UV sensitivity of strains with defects in either the error-prone (rev1Δ) or error-free (rad30Δ) branches of PRR, but did not enhance the UV sensitivity of a strain with a rad5Δ mutation. When combined with a ubc13Δ mutation, which is also epistatic with rad5Δ, the htb1-3 mutation enhanced UV-induced cell killing. These results suggest that histone H2B acts in a novel RAD5-dependent branch of PRR.


Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 504
Author(s):  
Takayuki Saitoh ◽  
Tsukasa Oda

Multiple myeloma (MM) is an incurable plasma cell malignancy characterized by genomic instability. MM cells present various forms of genetic instability, including chromosomal instability, microsatellite instability, and base-pair alterations, as well as changes in chromosome number. The tumor microenvironment and an abnormal DNA repair function affect genetic instability in this disease. In addition, states of the tumor microenvironment itself, such as inflammation and hypoxia, influence the DNA damage response, which includes DNA repair mechanisms, cell cycle checkpoints, and apoptotic pathways. Unrepaired DNA damage in tumor cells has been shown to exacerbate genomic instability and aberrant features that enable MM progression and drug resistance. This review provides an overview of the DNA repair pathways, with a special focus on their function in MM, and discusses the role of the tumor microenvironment in governing DNA repair mechanisms.


2010 ◽  
Vol 79 (1) ◽  
pp. 75-87 ◽  
Author(s):  
Min Wu ◽  
Huang Huang ◽  
Weidong Zhang ◽  
Shibichakravarthy Kannan ◽  
Andrew Weaver ◽  
...  

ABSTRACTAlthough DNA repair proteins in bacteria are critical for pathogens' genome stability and for subverting the host defense, the role of host DNA repair proteins in response to bacterial infection is poorly defined. Here, we demonstrate, for the first time, that infection with the Gram-negative bacteriumPseudomonas aeruginosasignificantly altered the expression and enzymatic activity of 8-oxoguanine DNA glycosylase (OGG1) in lung epithelial cells. Downregulation of OGG1 by a small interfering RNA strategy resulted in severe DNA damage and cell death. In addition, acetylation of OGG1 is required for host responses to bacterial genotoxicity, as mutations of OGG1 acetylation sites increased Cockayne syndrome group B (CSB) protein expression. These results also indicate that CSB may be involved in DNA repair activity during infection. Furthermore, OGG1 knockout mice exhibited increased lung injury after infection withP. aeruginosa, as demonstrated by higher myeloperoxidase activity and lipid peroxidation. Together, our studies indicate thatP. aeruginosainfection induces significant DNA damage in host cells and that DNA repair proteins play a critical role in the host response toP. aeruginosainfection, serving as promising targets for the treatment of this condition and perhaps more broadly Gram-negative bacterial infections.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Miaomiao Bai ◽  
Dongdong Ti ◽  
Qian Mei ◽  
Jiejie Liu ◽  
Xin Yan ◽  
...  

The human body is a complex structure of cells, which are exposed to many types of stress. Cells must utilize various mechanisms to protect their DNA from damage caused by metabolic and external sources to maintain genomic integrity and homeostasis and to prevent the development of cancer. DNA damage inevitably occurs regardless of physiological or abnormal conditions. In response to DNA damage, signaling pathways are activated to repair the damaged DNA or to induce cell apoptosis. During the process, posttranslational modifications (PTMs) can be used to modulate enzymatic activities and regulate protein stability, protein localization, and protein-protein interactions. Thus, PTMs in DNA repair should be studied. In this review, we will focus on the current understanding of the phosphorylation, poly(ADP-ribosyl)ation, ubiquitination, SUMOylation, acetylation, and methylation of six typical PTMs and summarize PTMs of the key proteins in DNA repair, providing important insight into the role of PTMs in the maintenance of genome stability and contributing to reveal new and selective therapeutic approaches to target cancers.


Sign in / Sign up

Export Citation Format

Share Document