scholarly journals Selection of DNA markers closely linked to the resistance gene rym7t against Barley yellow mosaic disease

2012 ◽  
Vol 14 (2) ◽  
pp. 43-49 ◽  
Author(s):  
Kinuko Takata ◽  
Hiroomi Kai ◽  
Yosuke Uchimura ◽  
Morihiro Tsukazaki ◽  
Masahiko Furusho ◽  
...  
Author(s):  
Hélène Pidon ◽  
Neele Wendler ◽  
Antje Habekuβ ◽  
Anja Maasberg ◽  
Brigitte Ruge-Wehling ◽  
...  

Abstract Key message We mapped the Rym14Hb resistance locus to barley yellow mosaic disease in a 2Mbp interval. The co-segregating markers will be instrumental for marker-assisted selection in barley breeding. Abstract Barley yellow mosaic disease is caused by Barley yellow mosaic virus and Barley mild mosaic virus and leads to severe yield losses in barley (Hordeum vulgare) in Central Europe and East-Asia. Several resistance loci are used in barley breeding. However, cases of resistance-breaking viral strains are known, raising concerns about the durability of those genes. Rym14Hb is a dominant major resistance gene on chromosome 6HS, originating from barley’s secondary genepool wild relative Hordeum bulbosum. As such, the resistance mechanism may represent a case of non-host resistance, which could enhance its durability. A susceptible barley variety and a resistant H. bulbosum introgression line were crossed to produce a large F2 mapping population (n = 7500), to compensate for a ten-fold reduction in recombination rate compared to intraspecific barley crosses. After high-throughput genotyping, the Rym14Hb locus was assigned to a 2Mbp telomeric interval on chromosome 6HS. The co-segregating markers developed in this study can be used for marker-assisted introgression of this locus into barley elite germplasm with a minimum of linkage drag.


2021 ◽  
Vol 2 (3) ◽  
pp. 1-7
Author(s):  
Ridha Novanda ◽  
Mimi Sutrawati ◽  
Dwi Wahyuni Ganefianti

Profit loss is a phenomenon caused by the loss of most of the harvest resulting in operating costs greater than the revenue earned. This phenomenon deserves to be analyzed the risk of losses that will be obtained due to pests and plant diseases. So that in this study an analysis of the risk of Profit loss due to yellow mosaic disease on papaya calina was carried out. This research was conducted in October 2020 in Bengkulu Province on 31 Calina Papaya farmers. The location selection was carried out purposively based on the existence of the Calina papaya garden. Meanwhile, the selection of respondents was carried out using the Snowball sampling method in several districts in Bengkulu Province. Data analysis was carried out to determine the Profit loss. Based on the results of the analysis, it was found that there were differences in the benefits of papaya calina which were attacked by the Yellow Virus Mosaic and those that were not attacked by the Yellow Virus Mosaic. Profit loss for a year is Rp 9,135,203,-. This value is a big value, so farmers must handle this disease better.


2020 ◽  
Author(s):  
Hélène Pidon ◽  
Neele Wendler ◽  
Antje Habekuβ ◽  
Anja Maasberg ◽  
Brigitte Ruge-Wehling ◽  
...  

AbstractBarley yellow mosaic disease is caused by Barley yellow mosaic virus and Barley mild mosaic virus, and leads to severe yield losses in barley (Hordeum vulgare) in Central Europe and East-Asia. Several resistance loci are used in barley breeding. However, cases of resistance-breaking viral strains are known, raising concerns about the durability of those genes. Rym14Hb is a dominant major resistance gene on chromosome 6HS, originating from barley’s secondary genepool wild relative Hordeum bulbosum. As such, the resistance mechanism may represent a case of non-host resistance, which could enhance its durability. A susceptible barley variety and a resistant H. bulbosum introgression line were crossed to produce a large F2 mapping population (n=7,500), to compensate for a ten-fold reduction in recombination rate compared to intraspecific barley crosses. After high-throughput genotyping, the Rym14Hb locus was assigned to a 2Mbp telomeric interval on chromosome 6HS. The co-segregating markers developed in this study can be used for marker-assisted introgression of this locus into barley elite germplasm with a minimum of linkage drag.


Genome ◽  
1997 ◽  
Vol 40 (2) ◽  
pp. 176-179 ◽  
Author(s):  
J. D. Procunier ◽  
M. A. Gray ◽  
N. K. Howes ◽  
R. E. Knox ◽  
A. M. Bernier

Screening for loose smut resistance in wheat is difficult. Selecting lines with DNA markers linked to loose smut resistance would be more reliable and less costly. Molecular markers linked to a race T10 loose smut resistance gene were identified using a F6 single seed descent segregating population. A RAPD marker and a RFLP marker were located on opposite flanks of the resistance gene and were shown to be loosely linked. The RAPD marker was converted to a user friendly polymorphic SCAR marker that represented a single genetically defined locus in hexaploid wheat. Using these two bracketing markers simultaneously, the error rate for T10 resistance selection due to crossing-over was reduced to 4%. These markers can be used for a faster and more reliable selection of T10 resistant plants than previous conventional loose smut ratings.Key words: wheat, marker, loose smut, SCAR.


2001 ◽  
Vol 52 (12) ◽  
pp. 1349 ◽  
Author(s):  
H. A. Eagles ◽  
H. S. Bariana ◽  
F. C. Ogbonnaya ◽  
G. J. Rebetzke ◽  
G. J. Hollamby ◽  
...  

Genetic associations of morphological, biochemical, and DNA markers with economically important traits can be used for indirect selection of the traits. Chromosomal linkage between pseudo-black chaff and the stemrust resistance gene Sr2, and between the red glume gene (Rg1) and the stripe rust resistance gene Yr10, have been used in this way for many years. Similarly, linkages between disease resistance genes, such as Sr38,Lr37, and Yr17, have been used to achieve resistance to multiple diseases while selection is performed for resistance to one disease. Alleles at the Glu loci, assessed as protein differences, have been used as predictors of dough strength. More recently, DNA markers have been developed and used, especially to select for resistance to cereal cyst nematode, a trait which is difficult and expensive to assess with conventional bioassays. We found that the major use of DNA markers was for selection for traits of substantial economic importance, which were primarily determined by a single gene, and where the non-marker assay was expensive and unreliable. The other uses of markers were for pyramiding several genes influencing one trait, or for rapid backcrossing.


2017 ◽  
Vol 1 (67) ◽  
pp. 63-67
Author(s):  
Elena Ilnitskaya ◽  
◽  
Sergey Tokmakov ◽  
Marina Makarkina ◽  
◽  
...  
Keyword(s):  

Author(s):  
Sudeep Pandey ◽  
T.R. Girish ◽  
S. Basavaraj ◽  
A.S. Padmaja ◽  
N. Nagaraju

Background: Yellow mosaic disease (YMD) caused by begomoviruses transmitted through the insect vector Bemisia tabaci poses a serious threat to the production of legume crops. Methods: Season-long surveys were carried out for YMD occurrence in six different legume crops and associated natural weeds both symptomatic and asymptomatic across the districts of southern Karnataka, India. The samples were analyzed through RCA PCR using specific primer pairs. Result: Up to 94.1 per cent YMD incidence was recorded and nine weed species were commonly found associated with legume crops. The weeds viz., Ageratum conyzoides, Alternanthera sessilis, Commelina benghalensis and Euphorbia geniculata were abundantly found in the surveyed regions. The weeds were both symptomatic and asymptomatic. Rolling circle amplification coupled polymerase chain reaction method was employed to detect yellow mosaic virus in asymptomatic weeds. Phylogenetic analysis based on the sequences of PCR amplified products of weeds and symptomatic legumes revealed a close clustering of the weed samples with horsegram yellow mosaic virus, legume yellow mosaic virus and mungbean yellow mosaic virus. Overall, our data suggests the role of weed species associated with legume crops as alternative/collateral hosts of begomoviruses and their role in the epidemiology of yellow mosaic disease.


Sign in / Sign up

Export Citation Format

Share Document