scholarly journals Insight into the role of phosphatidylserine in complement-mediated synapse loss in Alzheimer’s disease

2021 ◽  
Vol 10 ◽  
Author(s):  
Dimitra Sokolova ◽  
Thomas Childs ◽  
Soyon Hong
Life Sciences ◽  
2022 ◽  
pp. 120299
Author(s):  
Mehdi Sanati ◽  
Samaneh Aminyavari ◽  
Amir R. Afshari ◽  
Amirhossein Sahebkar

Author(s):  
Rohit Kumar Verma ◽  
Manisha Pandey ◽  
Pooja Chawla ◽  
Hira Choudhury ◽  
Jayashree Mayuren ◽  
...  

Background: The complication of Alzheimer’s disease (AD) has made the development of its therapeutic a challenging task. Even after decades of research, we have achieved no more than a few years of symptomatic relief. The inability to diagnose the disease early is the foremost hurdle behind its treatment. Several studies have aimed to identify potential biomarkers that can be detected in body fluids (CSF, blood, urine, etc) or assessed by neuroimaging (i.e., PET and MRI). However, the clinical implementation of these biomarkers is incomplete as they cannot be validated. Method: To overcome the limitation, the use of artificial intelligence along with technical tools has been extensively investigated for AD diagnosis. For developing a promising artificial intelligence strategy that can diagnose AD early, it is critical to supervise neuropsychological outcomes and imaging-based readouts with a proper clinical review. Conclusion: Profound knowledge, a large data pool, and detailed investigations are required for the successful implementation of this tool. This review will enlighten various aspects of early diagnosis of AD using artificial intelligence.


2022 ◽  
Vol 14 ◽  
Author(s):  
Zhen Lan ◽  
Yanting Chen ◽  
Jiali Jin ◽  
Yun Xu ◽  
Xiaolei Zhu

Alzheimer's disease (AD), a heterogeneous neurodegenerative disorder, is the most common cause of dementia accounting for an estimated 60–80% of cases. The pathogenesis of AD remains unclear, and no curative treatment is available so far. Increasing evidence has revealed a vital role of non-coding RNAs (ncRNAs), especially long non-coding RNAs (lncRNAs), in AD. LncRNAs contribute to the pathogenesis of AD via modulating amyloid production, Tau hyperphosphorylation, mitochondrial dysfunction, oxidative stress, synaptic impairment and neuroinflammation. This review describes the biological functions and mechanisms of lncRNAs in AD, indicating that lncRNAs may provide potential therapeutic targets for the diagnosis and treatment of AD.


2020 ◽  
Vol 52 (8) ◽  
pp. 1275-1287
Author(s):  
Seong Su Kang ◽  
Eun Hee Ahn ◽  
Keqiang Ye

Abstract Alzheimer’s disease (AD) is a progressive neurodegenerative disease with age as a major risk factor. AD is the most common dementia with abnormal structures, including extracellular senile plaques and intraneuronal neurofibrillary tangles, as key neuropathologic hallmarks. The early feature of AD pathology is degeneration of the locus coeruleus (LC), which is the main source of norepinephrine (NE) supplying various cortical and subcortical areas that are affected in AD. The spread of Tau deposits is first initiated in the LC and is transported in a stepwise manner from the entorhinal cortex to the hippocampus and then to associative regions of the neocortex as the disease progresses. Most recently, we reported that the NE metabolite DOPEGAL activates delta-secretase (AEP, asparagine endopeptidase) and triggers pathological Tau aggregation in the LC, providing molecular insight into why LC neurons are selectively vulnerable to developing early Tau pathology and degenerating later in the disease and how δ-secretase mediates the spread of Tau pathology to the rest of the brain. This review summarizes our current understanding of the crucial role of δ-secretase in driving and spreading AD pathologies by cleaving multiple critical players, including APP and Tau, supporting that blockade of δ-secretase may provide an innovative disease-modifying therapeutic strategy for treating AD.


2020 ◽  
Vol 14 ◽  
Author(s):  
Jaichandar Subramanian ◽  
Julie C. Savage ◽  
Marie-Ève Tremblay

Synapse loss is the strongest correlate for cognitive decline in Alzheimer's disease. The mechanisms underlying synapse loss have been extensively investigated using mouse models expressing genes with human familial Alzheimer's disease mutations. In this review, we summarize how multiphoton in vivo imaging has improved our understanding of synapse loss mechanisms associated with excessive amyloid in the living animal brain. We also discuss evidence obtained from these imaging studies for the role of cell-intrinsic calcium dyshomeostasis and cell-extrinsic activities of microglia, which are the immune cells of the brain, in mediating synapse loss.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Celia Luchena ◽  
Jone Zuazo-Ibarra ◽  
Elena Alberdi ◽  
Carlos Matute ◽  
Estibaliz Capetillo-Zarate

Synapse loss is an early manifestation of pathology in Alzheimer’s disease (AD) and is currently the best correlate to cognitive decline. Microglial cells are involved in synapse pruning during development via the complement pathway. Moreover, recent evidence points towards a key role played by glial cells in synapse loss during AD. However, further contribution of glial cells and the role of neurons to synapse pathology in AD remain not well understood. This review is aimed at comprehensively reporting the source and/or cellular localization in the CNS—in microglia, astrocytes, or neurons—of the triggering components (C1q, C3) of the classical complement pathway involved in synapse pruning in development, adulthood, and AD.


Sign in / Sign up

Export Citation Format

Share Document