scholarly journals RESEARCH ON THE TRAINING OF ELECTROMECHANICAL COMPLEX TALENTS IN HIGHER VOCATIONAL COLLEGES UNDER THE BACKGROUND OF ARTIFICIAL INTELLIGENCE

Author(s):  
AN-YAN CAO ◽  
QIAN LV ◽  
LI-GONG CUI

The new technology in artificial intelligence has a far-reaching impact on the intelligent development of the manufacturing industry. These new skill requirements are bound to promote the reform of vocational education in the field of intelligent control. It is urgent to train a group of highly skilled compound talents who can adapt to the development of artificial intelligence and intelligent manufacturing and can engage in the field of intelligent control technology. In this background, this paper takes Binzhou Polytechnic as an example, which is a high level vocational college with Chinese characteristics. We investigate the current situation and development prospect of artificial intelligence and intelligent manufacturing and analyze the problems and development opportunities of mechatronics technology specialty under the background of artificial intelligence development. We put forward some suggestions on the personnel training system of mechatronics technology from the aspects of specialty orientation and the integration and optimization of training specifications, the development of specialty curriculum system, the reform of teaching mode, and the construction of innovative teacher team.

2021 ◽  
Author(s):  
Simone Pirrotta ◽  
Biagio Cotugno ◽  
Valerio di Tana ◽  
Silvio Patruno ◽  
Francesca Ingiosi ◽  
...  

<p>In order to increase the scientific and technological return of the Artemis I mission, NASA has directed the SLS Program to accommodate Secondary Payloads on board of the Space Launch System (SLS), to be deployed with the Orion capsule; among them, ArgoMoon cubesat has been selected as European contribution. It is a 6U platform designed by Argotec on behalf of the Italian Space Agency (ASI) and will be released from the launch vehicle Interim Cryogenic Propulsion Stage (ICPS). The main objectives of the satellite are: i) taking photographs to document the ICPS after the deployment of the Orion capsule and the deployment of the other secondary payloads mounted on-board; ii) taking photographs of the Earth and the Moon; iii) validate guidance and autonomous targeting technology and iv) verifying a new technology for power distribution, satellite data acquisition and processing suitable for nanosatellite volume. In fact, the cubesat will be the first national spacecraft working in near Deep Space and operated through a Ground Segment mainly based in Italy.</p> <p>ArgoMoon design is based on the HAWK platform, designed by Argotec following an “all in-house” concept. Some of the main features of this platform are the focus on rad-hard subsystem components, a high level of autonomy capability supported by artificial intelligence, and the scalability towards larger bus sizes.</p> <p>Early after deployment, ArgoMoon will be able to operate autonomously and perform SLS tracking and proximity flight navigation, making use of a complex image recognition algorithm based on artificial intelligence. These operations are carried out by two optical payloads and the obtained photography will be used to support the NASA and payload communities in providing information regarding the status of their deployment and the condition of the second stage as it completes the final phase of its mission. After that, ArgoMoon will be operative for another six months for technological validation and Moon observation purposes.</p> <p>During the communication windows throughout the entire satellite lifetime, ArgoMoon will be operated and monitored entirely by the Argotec Mission Control Centre, connected to the Deep Space Network (DSN). The Flight Control Team (FCT) will follow the flight operations with in-house developed software able to plan and validate in orbit activities, verifying the on-board.</p> <p>After a successfully integration and test campaign, the cubesat has been shipped to USA for the filling activities on the propulsion tanks and the final delivery to NASA for the integration in the SLS, expected in July 2021.</p> <p>The results of this mission will strongly contribute to future of Space Exploration based on small satellite platforms in Deep Space.</p>


2019 ◽  
Vol 12 (3) ◽  
pp. 125-133
Author(s):  
S. V. Shchurina ◽  
A. S. Danilov

The subject of the research is the introduction of artificial intelligence as a technological innovation into the Russian economic development. The relevance of the problem is due to the fact that the Russian market of artificial intelligence is still in the infancy and the necessity to bridge the current technological gap between Russia and the leading economies of the world is coming to the forefront. The financial sector, the manufacturing industry and the retail trade are the drivers of the artificial intelligence development. However, company managers in Russia are not prepared for the practical application of expensive artificial intelligence technologies. Under these circumstances, the challenge is to develop measures to support high-tech projects of small and medium-sized businesses, given that the technological innovation considered can accelerate the development of the Russian economy in the energy sector fully or partially controlled by the government as well as in the military-industrial complex and the judicial system.The purposes of the research were to examine the current state of technological innovations in the field of artificial intelligence in the leading countries and Russia and develop proposals for improving the AI application in the Russian practices.The paper concludes that the artificial intelligence is a breakthrough technology with a great application potential. Active promotion of the artificial intelligence in companies significantly increases their efficiency, competitiveness, develops industry markets, stimulates introduction of new technologies, improves product quality and scales up manufacturing. In general, the artificial intelligence gives a new impetus to the development of Russia and facilitates its entry into the five largest world’s economies.


Author(s):  
Andrea Renda

This chapter assesses Europe’s efforts in developing a full-fledged strategy on the human and ethical implications of artificial intelligence (AI). The strong focus on ethics in the European Union’s AI strategy should be seen in the context of an overall strategy that aims at protecting citizens and civil society from abuses of digital technology but also as part of a competitiveness-oriented strategy aimed at raising the standards for access to Europe’s wealthy Single Market. In this context, one of the most peculiar steps in the European Union’s strategy was the creation of an independent High-Level Expert Group on AI (AI HLEG), accompanied by the launch of an AI Alliance, which quickly attracted several hundred participants. The AI HLEG, a multistakeholder group including fifty-two experts, was tasked with the definition of Ethics Guidelines as well as with the formulation of “Policy and Investment Recommendations.” With the advice of the AI HLEG, the European Commission put forward ethical guidelines for Trustworthy AI—which are now paving the way for a comprehensive, risk-based policy framework.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2617
Author(s):  
Catalin Dumitrescu ◽  
Petrica Ciotirnae ◽  
Constantin Vizitiu

When considering the concept of distributed intelligent control, three types of components can be defined: (i) fuzzy sensors which provide a representation of measurements as fuzzy subsets, (ii) fuzzy actuators which can operate in the real world based on the fuzzy subsets they receive, and, (iii) the fuzzy components of the inference. As a result, these elements generate new fuzzy subsets from the fuzzy elements that were previously used. The purpose of this article is to define the elements of an interoperable technology Fuzzy Applied Cell Control-soft computing language for the development of fuzzy components with distributed intelligence implemented on the DSP target. The cells in the network are configured using the operations of symbolic fusion, symbolic inference and fuzzy–real symbolic transformation, which are based on the concepts of fuzzy meaning and fuzzy description. The two applications presented in the article, Agent-based modeling and fuzzy logic for simulating pedestrian crowds in panic decision-making situations and Fuzzy controller for mobile robot, are both timely. The increasing occurrence of panic moments during mass events prompted the investigation of the impact of panic on crowd dynamics and the simulation of pedestrian flows in panic situations. Based on the research presented in the article, we propose a Fuzzy controller-based system for determining pedestrian flows and calculating the shortest evacuation distance in panic situations. Fuzzy logic, one of the representation techniques in artificial intelligence, is a well-known method in soft computing that allows the treatment of strong constraints caused by the inaccuracy of the data obtained from the robot’s sensors. Based on this motivation, the second application proposed in the article creates an intelligent control technique based on Fuzzy Logic Control (FLC), a feature of intelligent control systems that can be used as an alternative to traditional control techniques for mobile robots. This method allows you to simulate the experience of a human expert. The benefits of using a network of fuzzy components are not limited to those provided distributed systems. Fuzzy cells are simple to configure while also providing high-level functions such as mergers and decision-making processes.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Pierre Auloge ◽  
Julien Garnon ◽  
Joey Marie Robinson ◽  
Sarah Dbouk ◽  
Jean Sibilia ◽  
...  

Abstract Objectives To assess awareness and knowledge of Interventional Radiology (IR) in a large population of medical students in 2019. Methods An anonymous survey was distributed electronically to 9546 medical students from first to sixth year at three European medical schools. The survey contained 14 questions, including two general questions on diagnostic radiology (DR) and artificial intelligence (AI), and 11 on IR. Responses were analyzed for all students and compared between preclinical (PCs) (first to third year) and clinical phase (Cs) (fourth to sixth year) of medical school. Of 9546 students, 1459 students (15.3%) answered the survey. Results On DR questions, 34.8% answered that AI is a threat for radiologists (PCs: 246/725 (33.9%); Cs: 248/734 (36%)) and 91.1% thought that radiology has a future (PCs: 668/725 (92.1%); Cs: 657/734 (89.5%)). On IR questions, 80.8% (1179/1459) students had already heard of IR; 75.7% (1104/1459) stated that their knowledge of IR wasn’t as good as the other specialties and 80% would like more lectures on IR. Finally, 24.2% (353/1459) indicated an interest in a career in IR with a majority of women in preclinical phase, but this trend reverses in clinical phase. Conclusions Development of new technology supporting advances in artificial intelligence will likely continue to change the landscape of radiology; however, medical students remain confident in the need for specialty-trained human physicians in the future of radiology as a clinical practice. A large majority of medical students would like more information about IR in their medical curriculum; almost a quarter of students would be interested in a career in IR.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jane Scheetz ◽  
Philip Rothschild ◽  
Myra McGuinness ◽  
Xavier Hadoux ◽  
H. Peter Soyer ◽  
...  

AbstractArtificial intelligence technology has advanced rapidly in recent years and has the potential to improve healthcare outcomes. However, technology uptake will be largely driven by clinicians, and there is a paucity of data regarding the attitude that clinicians have to this new technology. In June–August 2019 we conducted an online survey of fellows and trainees of three specialty colleges (ophthalmology, radiology/radiation oncology, dermatology) in Australia and New Zealand on artificial intelligence. There were 632 complete responses (n = 305, 230, and 97, respectively), equating to a response rate of 20.4%, 5.1%, and 13.2% for the above colleges, respectively. The majority (n = 449, 71.0%) believed artificial intelligence would improve their field of medicine, and that medical workforce needs would be impacted by the technology within the next decade (n = 542, 85.8%). Improved disease screening and streamlining of monotonous tasks were identified as key benefits of artificial intelligence. The divestment of healthcare to technology companies and medical liability implications were the greatest concerns. Education was identified as a priority to prepare clinicians for the implementation of artificial intelligence in healthcare. This survey highlights parallels between the perceptions of different clinician groups in Australia and New Zealand about artificial intelligence in medicine. Artificial intelligence was recognized as valuable technology that will have wide-ranging impacts on healthcare.


Sign in / Sign up

Export Citation Format

Share Document