Effects of Supplemental Green LEDs to Red and Blue Light on the Growth, Yield and Quality of Hydroponic Cultivated Spinach (Spinacia oleracea L.) in Plant Factory

2020 ◽  
Vol 29 (2) ◽  
pp. 171-180
Author(s):  
Phuong Dung Nguyen Thi ◽  
Thanh Huyen Tran Thi ◽  
Dong Cheol Jang ◽  
Il Seop Kim ◽  
Quang Thach Nguyen
2017 ◽  
Vol 33 (1) ◽  
pp. 30-41 ◽  
Author(s):  
Salma Shaheen ◽  
Mumtaz Khan ◽  
Muhammad Jamil Khan ◽  
Saleem Jilani ◽  
Zarina Bibi ◽  
...  

Author(s):  
Baiamonlangki Sutnga ◽  
Vijay Bahadur ◽  
Anita Kerketta

The present experiment entitled “Influence of nutrient concentration on Growth, Yield and Quality of Spinach (Spinacia oleracea L.) in Hydroponic system” was carried out in Shade net, Research Field, Department of Horticulture, SHUATS, Prayagraj during  March- April,2020.. The experiment was laid out in complete randomized design (CRD), with eight treatments, replicated thrice with nutrient field technique hydroponics system and variety Mulayam of Spinach, the treatments were T1 (NPK 6.25 ml/plant), T2 (NPK 8.33 ml/plant), T3 (NPK 10.41 ml/plant), T4 (NPK 12.5 ml/plant), T5 (NPK 14.58 ml/plant), T6 (NPK 16.66 ml/plant), T7 (NPK 18.75 ml/plant) and T0 (NPK 0 ml/plant). From the present experimental findings, it is found that structure with treatment T4 was found best in terms of Growth and yield parameters of spinach in NFT hydroponic system followed by structure with T3 and T1 due to appropriate supply of plant nutrients and the water treated plants had the lowest values. Maximum gross return (1871.30Rs) and net return (746.30 Rs) and maximum benefit cost ratio (1.66) was also observed in treatment T4. As seen from the experiment, it was observed that the treatment T4 was ideal nutrient for Spinach good growth and yield. Therefore, an ideal nutrient concentration helps the plants in good growth and yield.


Horticulturae ◽  
2021 ◽  
Vol 7 (7) ◽  
pp. 200
Author(s):  
Ida Di Mola ◽  
Lucia Ottaiano ◽  
Eugenio Cozzolino ◽  
Leo Sabatino ◽  
Maria Isabella Sifola ◽  
...  

Light and nitrogen strongly affect the growth, yield, and quality of food crops, with greater importance in green leafy vegetables for their tendency to accumulate nitrate in leaves. The purpose of this research was to explore the effect of two greenhouse films (Film A and B) on yield, and quality of spinach grown under different nitrogen regimes (not fertilized—N0%; sub-optimal N dose—N50%; optimal N dose—N100%). Film A and Film B were used as clear and diffused light films, with 75% and 87% thermicity, and 85% and 90% total transmittivity, respectively, where only Film B had a UV-B window. Film B elicited an increase in yield (22%) and soil–plant analysis development (SPAD) index (4.6%) compared to the clear film, but did not affect chlorophyll a, b, and total chlorophyll content. In addition, the diffuse film significantly decreased ascorbic acid in the crop but had no effect on lipophilic antioxidant activity and phenols content, but decreased ascorbic acid content. Finally, nitrate content was strongly increased both by nitrogen dose (about 50-fold more than N0%) and greenhouse films (about six-fold higher under diffuse light film), but within the legal limit fixed by European Commission. Therefore, irrespective of N levels, the use of diffuse-light film in winter boosts spinach yield without depressing quality.


2018 ◽  
Author(s):  
C. Coy ◽  
A.V. Shuravilin ◽  
O.A. Zakharova

Приведены результаты исследований по изучению влияния промышленной технологии возделывания картофеля на развитие, урожайность и качество продукции. Выявлена положительная реакция растений на подкормку K2SO4 в период посадки. Корреляционно-регрессионный анализ урожайности и качества клубней выявил высокую степень достоверности результатов опыта. Содержание нитратов и тяжелых металлов в клубнях было ниже допустимых величин.The results of studies on the impact of industrial technology of potato cultivation on growth, yield and quality of products. There was a positive response of plants to fertilizer K2SO4 in the period of planting. Correlation and regression analysis of yield and quality of tubers revealed a high degree of reliability of the results of experience. The contents of nitrates and heavy metals in tubers was below the permissible values.


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 545d-545
Author(s):  
D.I. Leskovar ◽  
J.C. Ward ◽  
R.W. Sprague ◽  
A. Meiri

Water pumping restrictions of high-quality irrigation water from underground aquifers is affecting vegetable production in Southwest Texas. There is a need to develop efficient deficit-irrigation strategies to minimize irrigation inputs and maintain crop profitability. Our objective was to determine how growth, yield, and quality of cantaloupe (Cucumis melo L. cv. `Caravelle') are affected by irrigation systems with varying input levels, including drip depth position and polyethylene mulch. Stand establishment systems used were containerized transplants and direct seeding. Field experiments were conducted on a Uvalde silty clay loam soil. Marketable yields increased in the order of pre-irrigation followed by: dry-land conditions, furrow/no-mulch, furrow/mulch, drip-surface (0 cm depth)/mulch, drip-subsurface (10-cm depth)/mulch, and drip-subsurface (30 cm depth)/mulch. Pooled across all drip depth treatments, plants on drip had higher water use efficiency than plants on furrow/no-mulch or furrow/mulch systems. Transplants with drip-surface produced 75% higher total and fruit size No. 9 yields than drip-subsurface (10- or 30-cm depth) during the first harvest, but total yields were unaffected by drip tape position. About similar trends were measured in a subsequent study except for a significant irrigation system (stand establishment interaction for yield. Total yields were highest for transplants on drip-subsurface (10-cm depth) and direct seeded plants on drip-subsurface (10 and 30 cm depth) with mulch.


2014 ◽  
pp. 121-125
Author(s):  
B. Ghosh ◽  
T.K.S. Irenaeus ◽  
S. Kundu ◽  
P. Datta

2021 ◽  
Vol 13 (12) ◽  
pp. 6880
Author(s):  
Mohammad Amdadul Haque ◽  
Siti Zaharah Sakimin ◽  
Phebe Ding ◽  
Noraini Md. Jaafar ◽  
Mohd Khanif Yusop ◽  
...  

In agricultural production, nitrogen loss leads to economic loss and is a high environmental risk affecting plant growth, yield, and quality. Use of the N fertilizer with a urease inhibitor is thus necessary to minimize N losses and increase the efficiency of N. This study aimed to evaluate the effects of N-(n-butyl) Thiophosphoric Triamide (NBPT) on the growth, yield, and quality of pineapple. The experiment involved two foliar fertilizer treatments: 1% (w/v) urea solution with NBPT (2.25 mL kg−1 urea) was treated as NLU (NBPT Liquid Urea), and the same concentration of urea without NBPT served as the control. Both were applied 12 times, starting 1 month after planting (MAP) and continuing once a month for 12 months. The application of urea with NBPT notably increased the above-ground dry biomass per plant (20% and 10% at 8 and 12 MAP, respectively), leaf area per plant (23% and 15% at 8 and 12 MAP, respectively), N accumulation per plant (10%), PFPN (Partial Factor Productivity) (13%), and average fruit weight (15%) compared to the treatment with urea alone (control). The analysis of quality parameters indicated that urea with NBPT improves TSS (Total Soluble Solids) (19%), ascorbic acid (10%), and sucrose (14%) but reduces the total organic acid content (21%) in pineapple. When using urea with a urease inhibitor (NBPT), there was a significant improvement in growth, yield, quality, and nitrogen use efficiency, with the additional benefit of reduced nitrogen losses, in combination with easy handling. Hence, urea with a urease inhibitor can be used as a viable alternative for increasing pineapple yield by boosting growth with better fruit quality.


Author(s):  
Shankarappa Sridhara ◽  
Nandini Ramesh ◽  
Pradeep Gopakkali ◽  
Venkatesh Paramesh ◽  
Nissren Tamam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document