scholarly journals ReCellular Inc: Managing Demand Uncertainty in Closed-Loop Remanufacturing

Author(s):  
Akshay Mutha ◽  
Saurabh Bansal ◽  
V. Daniel R. Guide

The modeling-based case study is useful for two purposes: introduce closed-loop supply chains and highlight and model some of its unique aspects that the traditional newsvendor formulation does not capture. The case focuses on a third-party remanufacturer (3PR) who buys used cellphones in different quality grades in anticipation of demand. Phones in high grade have been used gently—they have a high acquisition cost but low remanufacturing cost. Low-grade phones have been used extensively—they are cheaper to acquire but have a higher remanufacturing cost. Medium-grade phones have intermediate acquisition and remanufacturing costs. The 3PR needs to trade off these two costs and determine which grade(s) of used phones to buy. The 3PR restores all phones to the same like-new standard during remanufacturing. Extensive use of the case in supply chain management courses shows that in the absence of a mathematical model, students systematically deviate from the optimal decisions because of contextual features. Overall, students believed the case was challenging and that it provides a valuable learning experience, both as an exposure to the closed-loop supply chain domain as well as developing models with industry-specific factors.

Author(s):  
Mehmet Talha Dulman ◽  
Surendra M. Gupta

This chapter presents a methodology to evaluate the benefit of using sensors in closed-loop supply chains. Sensors can be embedded into products to collect helpful information during their use and end-of-life (EOL) phases. This information can subsequently be employed to estimate the remaining lives of components and products and to ensure that proper maintenance is provided to avoid premature failures. The information is also useful in determining the quality of the components and products when planning EOL operations such as disassembly, inspection, and remanufacturing. To statistically illustrate these benefits, discrete event simulation is employed to a case study consisting of regular and sensor-embedded refrigerator systems. A design of experiments study is then employed where experiments are run to compare the two systems. The results reveal that the sensor-embedded systems perform much better than the regular systems in terms of disassembly costs, inspection costs, and EOL profits generated by selling the remanufactured products and components.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Shidi Miao ◽  
Deyun Chen ◽  
Tengfei Wang

To face the reality of resources exhaustion, the significance of recycling and remanufacturing in the closed-loop chain has become quite evident. This paper constructs a competitive recycling and remanufacturing model of the closed-loop supply chain through a case study of Midea Corp. and Gree Corp. and explores the impact of two recycling modes on total revenue of the supply chain and market share. The simulation results show that the total revenue of the supply chain will benefit from the increasing coverage points by the third party and the increasing environmental awareness of certain regions. The retailers show more enthusiasm of recycling through certain amendment of the contract between manufacturers and retailers. The time of payment could be shortened in closed loop. Moreover, the improvement of recycling mechanism of the retailers can enlarge the share of supply chain market. Guiding role of the proposed model and the simulation results played in establishing a better supply chain mode is presented.


2021 ◽  
Vol 13 (11) ◽  
pp. 6425
Author(s):  
Quanxi Li ◽  
Haowei Zhang ◽  
Kailing Liu

In closed-loop supply chains (CLSC), manufacturers, retailers, and recyclers perform their duties. Due to the asymmetry of information among enterprises, it is difficult for them to maximize efficiency and profits. To maximize the efficiency and profit of the CLSC, this study establishes five cooperation models of CLSC under the government‘s reward–penalty mechanism. We make decisions on wholesale prices, retail prices, transfer payment prices, and recovery rates relying on the Stackelberg game method and compare the optimal decisions. This paper analyzes the impact of the government reward-penalty mechanism on optimal decisions and how members in CLSC choose partners. We find that the government’s reward-penalty mechanism can effectively increase the recycling rate of used products and the total profit of the closed-loop supply chain. According to the calculation results of the models, under the government’s reward-penalty mechanism, the cooperation can improve the CLSC’s used products recycling capacity and profitability. In a supply chain, the more members participate in the cooperation, the higher profit the CLSC obtain. However, the cooperation mode of all members may lead to monopoly, which is not approved by government and customers.


Author(s):  
Chinmay Sane ◽  
Conrad S. Tucker

With continued emphasis on sustainability-driven design, reverse logistics is emerging as a vital competitive supply chain strategy for many of the global high-tech manufacturing firms. Various original equipment manufacturers (OEMs) and multi-product manufacturing firms are enhancing their reverse logistics strategies in order to establish an optimal closed-loop supply chain through which they can introduce refurbished variants of their products back into the market. While a refurbished product strategy helps to mitigate environmental impact challenges as well as provide additional economic benefits, it is limited to an existing product market, possibly a subset of the existing market, and fails to commercialize/target new markets. In addition to refurbishing, the alternatives available for utilizing End-Of-Life (EOL) products are currently restricted to recycling and permanent disposal. In this work, the authors propose employing a new EOL option called “resynthesis” that utilizes existing waste from EOL products in a novel way. This is achieved through the synthesis of assemblies/subassemblies across multiple domains. The “newly” synthesized product can then be incorporated into the dynamics of a closed-loop supply chain. The proposed methodology enables OEMs to not only offer refurbished products as part of their reverse logistics strategy, but also provide them with resynthesized product concepts that can be used to expand to new/emerging markets. The proposed methodology provides a general framework that includes OEMs (manufacturers of the original product), retailers (distributors of the original product and collectors of the EOL products) and third-party firms (managers of the EOL products) as part of a closed-loop supply chain strategy. The proposed methodology is compared with the existing methodologies in the literature wherein a third-party supplies the OEM only with refurbished products and supplies products unsuitable for refurbishing to another firm(s) for recycling/disposal. A case study involving a multi-product electronics manufacturer is presented to demonstrate the feasibility of the proposed methodology.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 466 ◽  
Author(s):  
Mowmita Mishra ◽  
Soumya Kanti Hota ◽  
Santanu Kumar Ghosh ◽  
Biswajit Sarkar

Considering the increasing number of end-of-life goods in the context of improving the ambience and health of a population and their destructive impacts, recycling strategies are important for industries and organizations. In this article, a closed-loop supply chain management containing a single manufacturer, a single retailer, and a third party is introduced in which the manufacturer first propagates newly finished goods and then dispatches some of the finished goods to the retailer considering a single-setup multi-delivery policy. Due to shipping, carbon emission is taken into account as well as a carbon emission trading mechanism to curb the amount of carbon emissions by the retailer. For recycling through collection, inspection, remanufacturing, and landfill, the third party collects the end-of-life goods from its customers and ships perfect products to the manufacturer after a two-stage inspection. In this model, major sources of emissions such as shipping, replenishment orders, and inventory have been taken care of. The minimizing of the total cost relating to the container capacity, shipment numbers, and replenishment cycle length is the main objective of the closed-loop supply chain management for making the system more profitable. Expository numerical explorations, analysis, and graphic representations are conferred to elucidate this model, and it is observed that this model saves some percentage of the cost compared to the existing literature.


2012 ◽  
pp. 313-342
Author(s):  
Roberto Poles

In the past, many companies were concerned with managing activities primarily along the traditional supply chain to optimize operational processes and thereby economic benefits, without considering new economic or environmental opportunities in relation to the reverse supply chain and the use of used or reclaimed products. In contrast, companies are now showing increased interest in reverse logistics and closed loop supply chains (CLSCs) and their economic benefits and environmental impacts. In this chapter, our focus is the study of remanufacturing activity, which is one of the main recovery methods applied to closed loop supply chains. Specifically, the authors investigate and evaluate strategies for effective management of inventory control and production planning of a remanufacturing system. To pursue this objective, they model a production and inventory system for remanufacturing using the System Dynamics (SD) simulation modeling approach. The authors primary interest is in the returns process of such a system. Case studies will be referred to in this chapter to support some of the findings and to further validate the developed model.


Sign in / Sign up

Export Citation Format

Share Document