Population Exposure Assessment Based on a Distributed Network of Low-Cost Continuous Reading PM2.5 Sensors in Xi’an, China

2014 ◽  
Vol 2014 (1) ◽  
pp. 2176
Author(s):  
Meiling Gao* ◽  
Junji Gao ◽  
Edmund Seto
Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4214
Author(s):  
Christopher Zuidema ◽  
Cooper S. Schumacher ◽  
Elena Austin ◽  
Graeme Carvlin ◽  
Timothy V. Larson ◽  
...  

We designed and built a network of monitors for ambient air pollution equipped with low-cost gas sensors to be used to supplement regulatory agency monitoring for exposure assessment within a large epidemiological study. This paper describes the development of a series of hourly and daily field calibration models for Alphasense sensors for carbon monoxide (CO; CO-B4), nitric oxide (NO; NO-B4), nitrogen dioxide (NO2; NO2-B43F), and oxidizing gases (OX-B431)—which refers to ozone (O3) and NO2. The monitor network was deployed in the Puget Sound region of Washington, USA, from May 2017 to March 2019. Monitors were rotated throughout the region, including at two Puget Sound Clean Air Agency monitoring sites for calibration purposes, and over 100 residences, including the homes of epidemiological study participants, with the goal of improving long-term pollutant exposure predictions at participant locations. Calibration models improved when accounting for individual sensor performance, ambient temperature and humidity, and concentrations of co-pollutants as measured by other low-cost sensors in the monitors. Predictions from the final daily models for CO and NO performed the best considering agreement with regulatory monitors in cross-validated root-mean-square error (RMSE) and R2 measures (CO: RMSE = 18 ppb, R2 = 0.97; NO: RMSE = 2 ppb, R2 = 0.97). Performance measures for NO2 and O3 were somewhat lower (NO2: RMSE = 3 ppb, R2 = 0.79; O3: RMSE = 4 ppb, R2 = 0.81). These high levels of calibration performance add confidence that low-cost sensor measurements collected at the homes of epidemiological study participants can be integrated into spatiotemporal models of pollutant concentrations, improving exposure assessment for epidemiological inference.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 268
Author(s):  
Todd C. Harris ◽  
Laurent Vuilleumier ◽  
Claudine Backes ◽  
Athanasios Nenes ◽  
David Vernez

Epidemiology and public health research relating to solar ultraviolet (UV) exposure usually relies on dosimetry to measure UV doses received by individuals. However, measurement errors affect each dosimetry measurement by unknown amounts, complicating the analysis of such measurements and their relationship to the underlying population exposure and the associated health outcomes. This paper presents a new approach to estimate UV doses without the use of dosimeters. By combining new satellite-derived UV data to account for environmental factors and simulation-based exposure ratio (ER) modelling to account for individual factors, we are able to estimate doses for specific exposure periods. This is a significant step forward for alternative dosimetry techniques which have previously been limited to annual dose estimation. We compare our dose estimates with dosimeter measurements from skiers and builders in Switzerland. The dosimetry measurements are expected to be slightly below the true doses due to a variety of dosimeter-related measurement errors, mostly explaining why our estimates are greater than or equal to the corresponding dosimetry measurements. Our approach holds much promise as a low-cost way to either complement or substitute traditional dosimetry. It can be applied in a research context, but is also fundamentally well-suited to be used as the basis for a dose-estimating mobile app that does not require an external device.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4637
Author(s):  
Huixin Zong ◽  
Peter Brimblecombe ◽  
Li Sun ◽  
Peng Wei ◽  
Kin-Fai Ho ◽  
...  

Sensor technology has enabled the development of portable low-cost monitoring kits that might supplement many applications in conventional monitoring stations. Despite the sensitivity of electrochemical gas sensors to environmental change, they are increasingly important in monitoring polluted microenvironments. The performance of a compact diffusion-based Personal Exposure Kit (PEK) was assessed for real-time gaseous pollutant measurement (CO, O3, and NO2) under typical environmental conditions encountered in the subtropical city of Hong Kong. A dynamic baseline tracking method and a range of calibration protocols to address system performance were explored under practical scenarios to assess the performance of the PEK in reducing the impact of rapid changes in the ambient environment in personal exposure assessment applications. The results show that the accuracy and stability of the ppb level gas measurement is enhanced even in heterogeneous environments, thus avoiding the need for data post-processing with mathematical algorithms, such as multi-linear regression. This establishes the potential for use in personal exposure monitoring, which has been difficult in the past, and for reporting more accurate and reliable data in real-time to support personal exposure assessment and portable air quality monitoring applications.


2017 ◽  
Vol 17 (9) ◽  
pp. 1631-1651 ◽  
Author(s):  
Saif Shabou ◽  
Isabelle Ruin ◽  
Céline Lutoff ◽  
Samuel Debionne ◽  
Sandrine Anquetin ◽  
...  

Abstract. Recent flash flood impact studies highlight that road networks are often disrupted due to adverse weather and flash flood events. Road users are thus particularly exposed to road flooding during their daily mobility. Previous exposure studies, however, do not take into consideration population mobility. Recent advances in transportation research provide an appropriate framework for simulating individual travel-activity patterns using an activity-based approach. These activity-based mobility models enable the prediction of the sequence of activities performed by individuals and locating them with a high spatial–temporal resolution. This paper describes the development of the MobRISK microsimulation system: a model for assessing the exposure of road users to extreme hydrometeorological events. MobRISK aims at providing an accurate spatiotemporal exposure assessment by integrating travel-activity behaviors and mobility adaptation with respect to weather disruptions. The model is applied in a flash-flood-prone area in southern France to assess motorists' exposure to the September 2002 flash flood event. The results show that risk of flooding mainly occurs in principal road links with considerable traffic load. However, a lag time between the timing of the road submersion and persons crossing these roads contributes to reducing the potential vehicle-related fatal accidents. It is also found that sociodemographic variables have a significant effect on individual exposure. Thus, the proposed model demonstrates the benefits of considering spatiotemporal dynamics of population exposure to flash floods and presents an important improvement in exposure assessment methods. Such improved characterization of road user exposures can present valuable information for flood risk management services.


Author(s):  
F. F. Verduijn ◽  
T. Algra ◽  
W. A. Brokx ◽  
G. J. Close ◽  
C. Lee ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 856
Author(s):  
Dorothy L. Robinson

The accuracy and utility of low-cost PM2.5 sensors was evaluated for measuring spatial variation and modeling population exposure to PM2.5 pollution from domestic wood-heating (DWH) in Armidale, a regional town in New South Wales (NSW), Australia, to obtain estimates of health costs and mortality. Eleven ‘PurpleAir’ (PA) monitors were deployed, including five located part of the time at the NSW government station (NSWGov) to derive calibration equations. Calibrated PA PM2.5 were almost identical to the NSWGov tapered element oscillating microbalance (TEOM) and Armidale Regional Council’s 2017 DustTrak measurements. Spatial variation was substantial. National air quality standards were exceeded 32 times from May–August 2018 at NSWGov and 63 times in one residential area. Wood heater use by about 50% of households increased estimated annual PM2.5 exposure by over eight micrograms per cubic meter, suggesting increased mortality of about 10% and health costs of thousands of dollars per wood heater per year. Accurate real-time community-based monitoring can improve estimates of exposure and avoid bias in estimating dose-response relationships. Efforts over the past decade to reduce wood smoke pollution proved ineffective, perhaps partly because some residents do not understand the health impacts or costs of wood-heating. Real-time Internet displays can increase awareness of DWH and bushfire pollution and encourage governments to develop effective policies to protect public health, as recommended by several recent studies in which wood smoke was identified as a major source of health-hazardous air pollution.


2018 ◽  
Vol 2018 (1) ◽  
Author(s):  
John Gerard William Minnery ◽  
Eugene Joh ◽  
Steven Johnson ◽  
Elaina MacIntyre ◽  
Sean Marshall ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document