scholarly journals A Bioremediation Study of Raw and Treated Crude Petroleum Oil Polluted Soil with Aspergillus niger and Pseudomonas aeruginosa

2018 ◽  
Vol 19 (2) ◽  
pp. 226-235 ◽  
Author(s):  
Modupe Ojewumi ◽  
Ejemen Anenih ◽  
Olugbenga Taiwo ◽  
Bosede Adekeye ◽  
Olugbenga Awolu ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Modupe Elizabeth Ojewumi ◽  
Moses Eterigho Emetere ◽  
Damilola Elizabeth Babatunde ◽  
Joshua Olusegun Okeniyi

Mathematical modelling of in situ (on site) bioremediation of crude petroleum polluted soil was investigated. An unsteady state mathematical model based on bulk flow of oil through the soil and molecular diffusion through the pores of the soil was developed. The parabolic partial differential equation developed was resolved into a system of ordinary differential equations (ODEs) by orthogonal collocation method and the necessary boundary condition was used. The resultant system of ODE was solved using fourth-order Runge-Kutta method. The simulated data gave a good agreement with experimental data.


Author(s):  
Modupe Ojewumi ◽  
Valentina Ejemen

The study was done to investigate the kinetics of first order bioremediation. The effectiveness of remediating soils polluted with raw crude oil and treated crude oil using Aspergillus niger (fungi) and Pseudomonas aeruginosa (bacteria) were investigated. Eight systems of 500g soil sample were polluted with both raw and treated crude oil. Four systems were polluted with 40g treated crude oil while the other remaining four systems were polluted with 40g raw crude oil. Two systems with raw crude and treated crude were left as control (RCC and TCC). Raw crude samples were treated with Aspergillus niger only (RCA) and Pseudomonas aeruginosa (RCP) while treated crude samples were also treated with same (TCA) and (TCP) only. The last two systems were treated with both Pseudomonas aeruginosa and Aspergillus niger (RCAP and TCAP). The first order bioremediation kinetics and biostimulant efficiency for these systems were studied by monitoring Total Petroleum Hydrocarbon (TPH). At the end of the bioremediation period, the results obtained showed that treated crude oil polluted soil generally remediated faster and better than raw crude oil polluted soil. The highest level of bioremediation occurred in systems amended with both Pseudomonas aeruginosa and Aspergillus niger which had about 98% TPH decrease.


Environments ◽  
2018 ◽  
Vol 5 (11) ◽  
pp. 124 ◽  
Author(s):  
Latifa Hamoudi-Belarbi ◽  
Safia Hamoudi ◽  
Khaled Belkacemi ◽  
L’Hadi Nouri ◽  
Leila Bendifallah ◽  
...  

The biostimulation potentials of carrot peel waste and carob kibbles for bioremediation of crude petroleum-oil polluted soil were investigated. Temperature, pH, moisture, total petroleum hydrocarbon (TPH), and changes in microbial counts during 45 days were monitored when 4 mL of carrot peel waste or carob kibbles media were added to 200 g of crude oil polluted soil samples. Gas chromatography-flame ionization detection (GC-FID) was used to compare hydrocarbon present in the crude oil polluted soil and in pure fuel, composition of crude oil polluted soil was analyzed by X-ray diffraction (XRD), and the TPH was measured by distillation using distiller mud. The results showed that, at the end of experiments, the concentration of TPH decreased in crude oil polluted soil containing carrot peel waste with a percentage of 27 ± 1.90% followed by crude oil polluted soil containing carob kibbles (34 ± 1.80%) and in the unamended control soil (36 ± 1.27%), respectively. The log [Colony Forming Unit (CFU)/g] of total heterotrophic bacteria in the crude oil polluted soil increased from 10.46 ± 0.91 to 13.26 ± 0.84 for carrot peel waste, from 11.01 ± 0.56 to 11.99 ± 0.77 for carob kibbles and from 8.18 ± 0.39 to 8.84 ± 0.84 for control, respectively. Such results demonstrated that carrot peel could be used to enhance activities of the microbial hydrocarbon-degrading bacteria during bioremediation of crude petroleum-oil polluted soil.


Author(s):  
P Danish ◽  
Q Ali ◽  
MM Hafeez ◽  
A Malik

Aloe vera is a well-known medicinal plant used in many therapeutic purposes. Naturally it is composed of many useful compounds that have ability to use for treatment of many diseases. The active compounds reported in this plant are saponins, sugar, enzymes, vitamins, aloesin, aloeemodin, aloin, acemannan aloemannan, aloeride, methylchromones, flavonoids, naftoquinones, sterols, minerals, anthraquinones, amino acids, lignin and salicylic acid and other different compounds including fat-soluble and water-soluble vitamins, enzymes, minerals, simple/complex sugars, organic acid and phenolic compounds. In this study aloe vera is used for antibacterial and antifulgal activity against different strains of bacteria and pathogenic fungal strains. Ethanol extract of Aloe vera leaves and roots is applied on these bacterial and fungal strains in different concentrations (15, 20, 25, 30µl). Bacillus cereus, Bacillus subtitis, Bacillus megaterium, Streptococcus pyogenes, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Acinetobacter baumannii, and some other bacterial strains are used for this study. Escherichia coli and Agrobacterium tumefacins shows zone of inhibition around 18mm which consider as good result. Bacillus subtitis and Bacillus megaterium also shows good result around 16mm. Proteus mirabilis and Pseudomonas aeruginosa shows minimum zone of inhibition which is around 11mm. among all used fungal strains (fuserium oxysporum, Candida albicans, Aspergillus fumigatus, Aspergillus niger) fuserium oxysporum and Aspergillus niger shows excellent results around 19mm both against root extract and leaves extract.


2018 ◽  
Vol 17-18 ◽  
pp. 196-204 ◽  
Author(s):  
Modupe Elizabeth Ojewumi ◽  
Joshua Olusegun Okeniyi ◽  
Elizabeth Toyin Okeniyi ◽  
Jacob Olumuyiwa Ikotun ◽  
Valentina Anenih Ejemen ◽  
...  

2019 ◽  
Vol 13 (3) ◽  
pp. 401-409
Author(s):  
Xinhui Deng ◽  
Runhua Chen ◽  
Shengnan Zhuo ◽  
Guiyin Zhou ◽  
Yan Shi

Sign in / Sign up

Export Citation Format

Share Document