scholarly journals In Situ Bioremediation of Crude Petroleum Oil Polluted Soil Using Mathematical Experimentation

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Modupe Elizabeth Ojewumi ◽  
Moses Eterigho Emetere ◽  
Damilola Elizabeth Babatunde ◽  
Joshua Olusegun Okeniyi

Mathematical modelling of in situ (on site) bioremediation of crude petroleum polluted soil was investigated. An unsteady state mathematical model based on bulk flow of oil through the soil and molecular diffusion through the pores of the soil was developed. The parabolic partial differential equation developed was resolved into a system of ordinary differential equations (ODEs) by orthogonal collocation method and the necessary boundary condition was used. The resultant system of ODE was solved using fourth-order Runge-Kutta method. The simulated data gave a good agreement with experimental data.

2018 ◽  
Vol 19 (2) ◽  
pp. 226-235 ◽  
Author(s):  
Modupe Ojewumi ◽  
Ejemen Anenih ◽  
Olugbenga Taiwo ◽  
Bosede Adekeye ◽  
Olugbenga Awolu ◽  
...  

Environments ◽  
2018 ◽  
Vol 5 (11) ◽  
pp. 124 ◽  
Author(s):  
Latifa Hamoudi-Belarbi ◽  
Safia Hamoudi ◽  
Khaled Belkacemi ◽  
L’Hadi Nouri ◽  
Leila Bendifallah ◽  
...  

The biostimulation potentials of carrot peel waste and carob kibbles for bioremediation of crude petroleum-oil polluted soil were investigated. Temperature, pH, moisture, total petroleum hydrocarbon (TPH), and changes in microbial counts during 45 days were monitored when 4 mL of carrot peel waste or carob kibbles media were added to 200 g of crude oil polluted soil samples. Gas chromatography-flame ionization detection (GC-FID) was used to compare hydrocarbon present in the crude oil polluted soil and in pure fuel, composition of crude oil polluted soil was analyzed by X-ray diffraction (XRD), and the TPH was measured by distillation using distiller mud. The results showed that, at the end of experiments, the concentration of TPH decreased in crude oil polluted soil containing carrot peel waste with a percentage of 27 ± 1.90% followed by crude oil polluted soil containing carob kibbles (34 ± 1.80%) and in the unamended control soil (36 ± 1.27%), respectively. The log [Colony Forming Unit (CFU)/g] of total heterotrophic bacteria in the crude oil polluted soil increased from 10.46 ± 0.91 to 13.26 ± 0.84 for carrot peel waste, from 11.01 ± 0.56 to 11.99 ± 0.77 for carob kibbles and from 8.18 ± 0.39 to 8.84 ± 0.84 for control, respectively. Such results demonstrated that carrot peel could be used to enhance activities of the microbial hydrocarbon-degrading bacteria during bioremediation of crude petroleum-oil polluted soil.


2017 ◽  
Author(s):  
Younghee Lee ◽  
Daniela M. Piper ◽  
Andrew S. Cavanagh ◽  
Matthias J. Young ◽  
Se-Hee Lee ◽  
...  

<div>Atomic layer deposition (ALD) of LiF and lithium ion conducting (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloys was developed using trimethylaluminum, lithium hexamethyldisilazide (LiHMDS) and hydrogen fluoride derived from HF-pyridine solution. ALD of LiF was studied using in situ quartz crystal microbalance (QCM) and in situ quadrupole mass spectrometer (QMS) at reaction temperatures between 125°C and 250°C. A mass gain per cycle of 12 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C and decreased at higher temperatures. QMS detected FSi(CH<sub>3</sub>)<sub>3</sub> as a reaction byproduct instead of HMDS at 150°C. LiF ALD showed self-limiting behavior. Ex situ measurements using X-ray reflectivity (XRR) and spectroscopic ellipsometry (SE) showed a growth rate of 0.5-0.6 Å/cycle, in good agreement with the in situ QCM measurements.</div><div>ALD of lithium ion conducting (AlF3)(LiF)x alloys was also demonstrated using in situ QCM and in situ QMS at reaction temperatures at 150°C A mass gain per sequence of 22 ng/(cm<sup>2</sup> cycle) was obtained from QCM measurements at 150°C. Ex situ measurements using XRR and SE showed a linear growth rate of 0.9 Å/sequence, in good agreement with the in situ QCM measurements. Stoichiometry between AlF<sub>3</sub> and LiF by QCM experiment was calculated to 1:2.8. XPS showed LiF film consist of lithium and fluorine. XPS also showed (AlF<sub>3</sub>)(LiF)x alloy consists of aluminum, lithium and fluorine. Carbon, oxygen, and nitrogen impurities were both below the detection limit of XPS. Grazing incidence X-ray diffraction (GIXRD) observed that LiF and (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film have crystalline structures. Inductively coupled plasma mass spectrometry (ICP-MS) and ionic chromatography revealed atomic ratio of Li:F=1:1.1 and Al:Li:F=1:2.7: 5.4 for (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film. These atomic ratios were consistent with the calculation from QCM experiments. Finally, lithium ion conductivity (AlF<sub>3</sub>)(LiF)<sub>x</sub> alloy film was measured as σ = 7.5 × 10<sup>-6</sup> S/cm.</div>


2021 ◽  
Vol 7 (9) ◽  
pp. eabf0116
Author(s):  
Shiqi Huang ◽  
Shaoxian Li ◽  
Luis Francisco Villalobos ◽  
Mostapha Dakhchoune ◽  
Marina Micari ◽  
...  

Etching single-layer graphene to incorporate a high pore density with sub-angstrom precision in molecular differentiation is critical to realize the promising high-flux separation of similar-sized gas molecules, e.g., CO2 from N2. However, rapid etching kinetics needed to achieve the high pore density is challenging to control for such precision. Here, we report a millisecond carbon gasification chemistry incorporating high density (>1012 cm−2) of functional oxygen clusters that then evolve in CO2-sieving vacancy defects under controlled and predictable gasification conditions. A statistical distribution of nanopore lattice isomers is observed, in good agreement with the theoretical solution to the isomer cataloging problem. The gasification technique is scalable, and a centimeter-scale membrane is demonstrated. Last, molecular cutoff could be adjusted by 0.1 Å by in situ expansion of the vacancy defects in an O2 atmosphere. Large CO2 and O2 permeances (>10,000 and 1000 GPU, respectively) are demonstrated accompanying attractive CO2/N2 and O2/N2 selectivities.


2002 ◽  
Vol 124 (4) ◽  
pp. 269-275
Author(s):  
Paolo Macini ◽  
Ezio Mesini

Radioactive Marker Technique (RMT), an in-situ method to measure reservoir rock compaction and to evaluate uniaxial compressibility coefficients Cm, is examined here. Recent field applications seems to confirm that RMT-derived Cm’s match with sufficient precision with those calculated from land subsidence observed over the field by means of geodetic surveys, but are not always in good agreement with those derived from lab measurements. In particular, here is reported an application of RMT in the Italian Adriatic offshore, which highlights the discrepancies of Cm’s measurements from lab and RMT. At present, these discrepancies aren’t thoroughly understood, so, from an applicative standpoint, it is still necessary to perform a critical comparison and integration between both set of data.


Author(s):  
Mohd Azril Riduan ◽  
Mohd Jumain Jalil ◽  
Intan Suhada Azmi ◽  
Afifudin Habulat ◽  
Danial Nuruddin Azlan Raofuddin ◽  
...  

Background: Greener epoxidation by using vegetable oil to create an eco-friendly epoxide is being studied because it is a more cost-effective and environmentally friendly commodity that is safer than non-renewable materials. The aim of this research is to come up with low-cost solutions for banana trunk acoustic panels with kinetic modelling of epoxy-based palm oil. Method: In this study, the epoxidation of palm oleic acid was carried out by in situ performic acid to produce epoxidized palm oleic acid. Results: Banana trunk acoustic panel was successfully innovated based on the performance when the epoxy was applied. Lastly, a mathematical model was developed by using the numerical integration of the 4th order Runge-Kutta method, and the results showed that there is a good agreement between the simulation and experimental data, which validates the kinetic model. Conclusion: Overall, the peracid mechanism was effective in producing a high yield of epoxy from palm oleic acid that is useful for the improvement of acoustic panels based on the banana trunk.


2006 ◽  
Vol 6 (4) ◽  
pp. 8155-8188
Author(s):  
S. Bartenbach ◽  
J. Williams ◽  
C. Plass-Dülmer ◽  
H. Berresheim ◽  
J. Lelieveld

Abstract. During a field campaign at the Meteorological Observatory Hohenpeissenberg (MOHp) in July 2004, VOCs were measured using GCxGC-FID. Comparison to routinely made GC-MS measurements showed good agreement for a variety of anthropogenic and biogenic ambient VOCs ranging in concentration from below the detection limit (0.1 pmol mol−1) to 180 pmol mol−1. Pronounced diurnal cycles were found for both the biogenic and anthropogenic compounds, driven for the most part by the daily rise and fall of the boundary layer over the station. For the reactive compounds (lifetimes <2 days), a significant, non-zero dependency of the variability on lifetime was found, indicating that chemistry (as opposed to transport alone) was playing a role in determining the ambient VOC concentrations. The relationship was exploited using a single-variate analysis to derive a daytime mean value of HO (5.3±1.4×106 molecules cm−3), which compares well to that measured at the site, 3.2±2.3×106 molecules cm−3. The analysis was extended to the night time data to estimate concentrations for NO3 (1.47±0.2×108 molecules cm−3), which is not measured at the site. The feasibility of this approach for environments dominated by emissions of short-lived VOCs to estimate ambient levels of radical species is discussed.


2021 ◽  
Vol 21 (10) ◽  
pp. 8195-8211
Author(s):  
Ivan Tadic ◽  
Clara M. Nussbaumer ◽  
Birger Bohn ◽  
Hartwig Harder ◽  
Daniel Marno ◽  
...  

Abstract. Mechanisms of tropospheric ozone (O3) formation are generally well understood. However, studies reporting on net ozone production rates (NOPRs) directly derived from in situ observations are challenging and are sparse in number. To analyze the role of nitric oxide (NO) in net ozone production in the upper tropical troposphere above the Atlantic Ocean and western Africa, we present in situ trace gas observations obtained during the CAFE-Africa (Chemistry of the Atmosphere: Field Experiment in Africa) campaign in August and September 2018. The vertical profile of in situ measured NO along the flight tracks reveals lowest NO mixing ratios of less than 20 pptv between 2 and 8 km altitude and highest mixing ratios of 0.15–0.2 ppbv above 12 km altitude. Spatial distribution of tropospheric NO above 12 km altitude shows that the sporadically enhanced local mixing ratios (>0.4 ppbv) occur over western Africa, which we attribute to episodic lightning events. Measured O3 shows little variability in mixing ratios at 60–70 ppbv, with slightly decreasing and increasing tendencies towards the boundary layer and stratosphere, respectively. Concurrent measurements of CO, CH4, OH, HO2 and H2O enable calculations of NOPRs along the flight tracks and reveal net ozone destruction at −0.6 to −0.2 ppbv h−1 below 6 km altitude and balance of production and destruction around 7–8 km altitude. We report vertical average NOPRs of 0.2–0.4 ppbv h−1 above 12 km altitude with NOPRs occasionally larger than 0.5 ppbv h−1 over western Africa coincident with enhanced NO. We compare the observational results to simulated data retrieved from the general circulation model ECHAM/MESSy Atmospheric Chemistry (EMAC). Although the comparison of mean vertical profiles of NO and O3 indicates good agreement, local deviations between measured and modeled NO are substantial. The vertical tendencies in NOPRs calculated from simulated data largely reproduce those from in situ experimental data. However, the simulation results do not agree well with NOPRs over western Africa. Both measurements and simulations indicate that ozone formation in the upper tropical troposphere is NOx limited.


2020 ◽  
Vol 237 ◽  
pp. 03013
Author(s):  
Jirong Yu ◽  
Mulugeta Petros ◽  
Upendra Singh ◽  
Tamer Refaat ◽  
Karl Reithmaier ◽  
...  

NASA Langley Research Center (LaRC) developed a double pulsed, high energy 2-micron Integrated Path Differential Absorption (IPDA) lidar instrument to measure atmospheric CO2 column density. The 2-μm double pulsed IPDA lidar was flown ten times in March and April of 2014. It was determined that the IPDA lidar measurement is in good agreement with an in-situ CO2 measurement by a collocated NOAA flight. The average column CO2 density difference between the IPDA lidar measurements and the NOAA air samples is 1.48ppm in the flight altitudes of 3 to 6.1 km.


Atmosphere ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1431
Author(s):  
Elissavet Galanaki ◽  
George Emmanouil ◽  
Konstantinos Lagouvardos ◽  
Vassiliki Kotroni

The spatiotemporal patterns and trends of shortwave global irradiance (SWGI) are a crucial factor affecting not only the climate but also sectors of the economy. In this work, the ERA5-Land reanalysis dataset is employed and evaluated against in situ measurements from a dense network of surface stations operated by the National Observatory of Athens over Greece, revealing a good agreement between the two datasets. Then, the spatiotemporal variability of SWGI is investigated over the Euro-Mediterranean region (10° W–42° E and 30° N–52° N) for a 40-year period (1981–2020). SWGI exhibits a smooth latitudinal variability from north to south of −5.4 W/m2/degree on an annual scale, while it varies significantly on a seasonal basis and is almost four times lower in the winter than in the summer. The SWGI trend during the analyzed period was found to be positive and statistically significant at the 95% confidence level. Spring and summer are the periods where positive and the strongest rates of SWGI trends are evident, while in the winter and autumn, negative or neutral trends were found. The increasing SWGI trend shows a slowdown during the beginning of the 2000s in all seasons, except autumn. The SWGI trend decreases by about −0.06 W/m2/decade every 100 m of elevation increase.


Sign in / Sign up

Export Citation Format

Share Document