scholarly journals Maximum Output Power Tracking of Wind Turbine Using Intelligent Control

Author(s):  
Muldi Yuhendri ◽  
Mochamad Ashari ◽  
Mauridhi Hery Purnomo
Author(s):  
Cherif Khelifi ◽  
Fateh Ferroudji ◽  
Farouk Meguellati ◽  
Khaled Koussa

A high emergence of wind energy into the electricity market needs a parallel efficient advance of wind power forecasting models. Determining optimal specific speed and drive-train ratio is crucial to describe, comprehend and optimize the coupling design between a wind turbine-rotor and an electric generator (EG) to capture maximum output power from the wind. The selection of the specific design speed to drive a generator is limited. It varies from (1-4) for vertical axis wind turbines and (6-8) for horizontal axis wind turbines. Typically, the solution is an iterative procedure, for selecting the adequate multiplier ratio giving the output power curve. The latter must be relatively appreciated to inlet and nominal rated wind speeds. However, instead of this tedious and costly method, in the present paper we are developing a novel heuristic coupling approach, which is economical, easy to describe and applicable for all types of variable speed wind turbines (VSWTs). The principle method is based on the fact that the mechanical power needed of the wind turbine (WT) to drive the EG must be permanently closer to the maximum mechanical power generated by the (WT).


2021 ◽  
Vol 40 ◽  
pp. 83-98
Author(s):  
Peter Anuoluwapo Gbadega ◽  
Akshay Kumar Saha

Wind power has many benefits over other energy sources, including a high power density and an outstanding return on investment. However, there are some drawbacks, such as intermittent output power and the need for periodic maintenance. As a result, its output is substantially variable, making it difficult to predict and potentially causing system instability. Therefore, to model such a source, it is necessary to model the dynamic behavior of the wind turbine generator as well as the characteristics of the wind speed to capture the fluctuations. Furthermore, the durability and efficiency of the wind energy conversion system (WECS) are wholly dependent on the quality of the control strategy employed. In this paper, we introduced a control scheme, which makes it possible to find an optimal solution to the control problem while at the same time operating within the constraint point. Therefore, we designed the Model Predictive Controller to control and smoothly transition the wind turbine in all its operating modes while complying with its constraints. The main objective of using this control technique is to maximize power production while keeping the control action as simple as possible. The WECS used in this study is the horizontal axis wind turbines (HAWT), which are easier to control as their dynamics are not so complicated to model and, at the same time, produce maximum output power. The controller works have to adapt in the same way as the control goals are different for different wind speeds. Gain and weight scheduling strategies are used to design a control system that allows smooth transitioning between control regions. The dynamics of the wind turbine system and the controller are designed and simulated by the MATLAB / Simulink environment.


2018 ◽  
Vol 6 (2) ◽  
pp. 75-81
Author(s):  
Muhammad Al Badri

This study is aimed to optimize the conversion of kinetic wind energy into electrical energy. Wind energy is a sustainable energy that is preferred to generate electricity for its low generation cost and low CO2 emissions. The considerations of physical principles of a horizontal axis wind turbine were involved in the study. Controlling of the blade angle deviation and the turbine rotation direction was also considered. For this purpose, a complete wind turbine system was setup by using the computerized simulation software (PSCAD). The system was running at five different cases with different wind speeds and different angles of the blade. The system was successfully generating a maximum output power from the wind turbine based on the changing of the deflection angle of the blade. Also the system would shut down if there were no matching between the wind speed and its direction with the angle of the blade.


Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 508
Author(s):  
Kui You ◽  
Zihan Zhou ◽  
Chao Gao ◽  
Qiao Yang

Biochar is a kind of carbon-rich material formed by pyrolysis of biomass at high temperature in the absence or limitation of oxygen. It has abundant pore structure and a large surface area, which could be considered the beneficial characteristics for electrodes of microbial electrochemical systems. In this study, reed was used as the raw material of biochar and six biochar-based electrode materials were obtained by three methods, including one-step biochar cathodes (BC 800 and BC 700), biochar/polyethylene composite cathodes (BP 5:5 and BP 6:4), and biochar/polyaniline/hot-melt adhesive composite cathode (BPP 5:1:4 and BPP 4:1:5). The basic physical properties and electrochemical properties of the self-made biochar electrode materials were characterized. Selected biochar-based electrode materials were used as the cathode of sediment microbial electrochemical reactors. The reactor with pure biochar electrode (BC 800) achieves a maximum output power density of 9.15 ± 0.02 mW/m2, which increases the output power by nearly 80% compared with carbon felt. When using a biochar/polyaniline/hot-melt adhesive (BPP 5:1:4) composite cathode, the output power was increased by 2.33 times. Under the premise of ensuring the molding of the material, the higher the content of biochar, the better the electrochemical performance of the electrodes. The treatment of reed powder before pyrolysis is an important factor for the molding of biochar. The one-step molding biochar cathode had satisfactory performance in sediment microbial electrochemical systems. By exploring the biochar-based electrode, waste biomass could be reused, which is beneficial for the environment.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 391
Author(s):  
Nan Wu ◽  
Yuncheng He ◽  
Jiyang Fu ◽  
Peng Liao

In this paper a novel hybrid piezoelectric and electromagnetic energy harvester for civil engineering low-frequency sloshing environment is reported. The architecture, fabrication and characterization of the harvester are discussed. The hybrid energy harvester is composed of a permanent magnet, copper coil, and PVDF(polyvinylidene difluoride) piezoelectric film, and the upper U-tube device containing a cylindrical fluid barrier is connected to the foundation support plate by a hinge and spring. The two primary means of energy collection were through the vortex street, which alternately impacted the PVDF piezoelectric film through fluid shedding, and the electromotive force (EMF) induced by changes in the magnetic field position in the conducting coil. Experimentally, the maximum output power of the piezoelectric transformer of the hybrid energy harvester was 2.47 μW (circuit load 270 kΩ; liquid level height 80 mm); and the maximum output power of the electromagnetic generator was 2.72 μW (circuit load 470 kΩ; liquid level height 60 mm). The low-frequency sloshing energy collected by this energy harvester can drive microsensors for civil engineering monitoring.


Laser Physics ◽  
2021 ◽  
Vol 32 (2) ◽  
pp. 025801
Author(s):  
Xiangrui Liu ◽  
Zhuang Li ◽  
Chengkun Shi ◽  
Bo Xiao ◽  
Run Fang ◽  
...  

Abstract We demonstrated 22 W LD-pumped high-power continuous-wave (CW) deep red laser operations at 718.5 and 720.8 nm based on an a-cut Pr3+:YLF crystal. The output power of both polarized directions reached the watt-level without output power saturation. A single wavelength laser operated at 720.8 nm in the π-polarized direction was achieved, with a high output power of 4.5 W and high slope efficiency of approximately 41.5%. To the best of our knowledge, under LD-pumped conditions, the laser output power and slope efficiency are the highest at 721 nm. By using a compact optical glass plate as an intracavity etalon, we suppressed the π-polarized 720.8 nm laser emission. And σ-polarized single-wavelength laser emission at 718.5 nm was achieved, with a maximum output power of 1.45 W and a slope efficiency of approximately 17.8%. This is the first time that we have achieved the σ-polarized laser emission at 718.5 nm generated by Pr3+:YLF lasers.


Author(s):  
James F. Walton ◽  
Andrew Hunsberger ◽  
Hooshang Heshmat

In this paper the authors will present the design and preliminary test results for a distributed electric generating system that uses renewable energy source for economical load-following and peak-shaving capability in an oil-free, high-speed micro-turboalternator system using compliant foil bearings and a permanent magnet alternator. Test results achieved with the prototype system operating to full speed and under power generating mode will be presented. A comparison between predicted and measured electrical output will also be presented up to a power generating level of 25 kWe at approximately 55,000 rpm. The excellent correlation between design and test provides the basis for scale up to larger power levels. Based upon the turboalternator test results a thermodynamic cycle analysis of a system using low grade waste heat water at approximately 100 C will be reviewed. The tradeoff study results for a series of environmentally friendly refrigerant working fluids will also be presented including sensitivity to vaporization and condensing temperatures. Based on the cycle and pinch point analyses predicted maximum output power was determined. Finally a preliminary turbine design for the selected R134a working fluid was completed. The results of this study show that a net output power level of greater than 40 kW is possible for approximately 240 l/m flow of water at 100C is possible.


Sign in / Sign up

Export Citation Format

Share Document