scholarly journals Assessment of spatial and temporal variation of water quality in mid hills of North West Himalyas- a Water Quality Index approach

2019 ◽  
Vol 14 (1) ◽  
pp. 37-48
Author(s):  
Ajay Kumar Singh ◽  
Satish Kumar Bhardwaj

Today, the quality of drinking water across the globe has become an environmental concern because of its degradation due to urbanization, industrialization, transportation etc. Solan, a rapidly developing district and an industrial hub, in the recent past has faced water borne diarrhoeal disease outbreaks. Therefore, the study was undertaken to assess the water quality of disease burden regions during monsoon and post monsoon seasons. pH of the water sources was in the range of 6.92- 7.43 and was well within normal limits. Electrical conductivity of water ranged from 151.40- 414.65 µS/cm. The water sources of high disease burden regions exhibited higher EC than the prescribed ICMR standards. DO (range 7.43- 8.56 mg/l) was normal in all disease burden regions. BOD (range 12.25- 23.25 mg/l) was higher than the BIS limits in all regions. The COD, TDS and turbidity (range 75.75- 157.50 mg/l, 2.24- 81.01 mg/l and 1.85- 5.05 NTU respectively) were within BIS limits. The concentrations (mg/l) of Ca, Pb, Hg, Zn and Cr was found in the ranges of 37.2- 122.9, 0.17- 0.51, 0.00- 0.03, 0.74- 8.99 and 0.04- 0.10, respectively. The high disease burden regions exhibited relatively higher contents of Ca, Hg and Cr as compared to lower one and the BIS limits. However, contents of Pb and Zn were above BIS limits in all the regions. The concentration (mg/l) of Mg, NO3-, Cl- and As was in the ranges of 14.25- 30.61, 5.10- 9.88, 16.42- 74.96 , 0.001- 0.014 respectively, which were below prescribed standards. Cd was detected (0.001 mg/l) in Solan region only, however it was within BIS limits. Water Quality Index (WQI) computed by using nine parameters varied from 78.58- 219.78 (very poor to unsafe drinking water class). Interestingly, water sources of all the high disease burden regions were unsafe for drinking (WQI: 102.02- 167.04). Water quality deteriorated more in the monsoons. The study therefore warrants remedial actions of water resource protection and conservation for provision of potable water.

2018 ◽  
Vol 162 ◽  
pp. 05001
Author(s):  
Nawar Al-Musawi

Diyala River is a tributary of Tigris River, it is one of the important rivers in Iraq. It covers a total distance of 445 km (275 miles). 32600 km2 is the area that drains by Diyala River between Iraqi-Iranian borders. This research aims to evaluate the water quality index WQI of Diyala River, where three stations were chosen along the river. These stations are D12 at Jalawlaa City at the beginning of Diyala River, the second station is D15 at Baaquba City at the mid distance of the river, and the third station is D17 which is the last station before the confluence of Diyala River with Tigris River at Baghdad city. Bhargava method was used in order to evaluate the water quality index for both irrigation and drinking uses. The results indicated that Diyala river water quality at its beginning was excellent for irrigation and good for drinking, while at the mid distance of the river, it was good for irrigation but heavily polluted and unsafe for drinking. Water quality of the river at the third site was acceptable for irrigation but again severely polluted and unsafe for drinking.


2010 ◽  
Vol 7 (s1) ◽  
pp. S428-S432 ◽  
Author(s):  
Ashok Kumar Yadav ◽  
Parveen Khan ◽  
Sanjay K. Sharma

This study deals with the statistical analysis and study of water quality index to assess hardness of groundwater in Todaraisingh tehsil of Tonk district of Rajasthan state. The study has been carried out to examine its suitability for drinking, irrigation and industrial purpose. The presence of problematic salts contains in groundwater due to local pollutants and affected the groundwater quality adversely. The estimated values were compared with drinking water quality standards prescribed by B.I.S. It was found that drinking water is severely polluted with hardness causing salts. This study reveals that people dependent on water sources of the study area are prone to health hazards of contaminated water and quality managements to hardness urgently needed.


2021 ◽  
Author(s):  
FAIZA HALLOUZ ◽  
Mohamed Meddi ◽  
Salaheddine Ali Rahmani

Abstract Dams are critical to agriculture, industry, and the needs of humans and wildlife. This study evaluates the water quality of the Ghrib dam in north west of Algeria, using Irrigation Water Quality Index (IWQI), sodium absorption rates (SAR) and multivariate statistical methods (Clustering and principal component analysis). The study concerns the analysis of physical and chemical parameters (pH, EC, O2, TUR, Ca, Mg, HCO3, Na, K, BOD, DCO, Cl−, PO4, SO3. NH4 et NO3) which were measured at twelve selected points along the dam over 8 periods (dry and wet periods) using standard methods. Irrigation Water Quality Index values in the dam were found to be between 41 and 59, according to classifications for different water uses, values below 60 indicate that water is of poor quality for irrigation and treatment is recommended to make dam water more suitable for irrigation. The results of water analysis in our study area reveal the presence of acute pollution which is certainly caused by direct releases of either industrial or domestic origin, and we note that this pollution remains variable depending on the collection periods. Also, Chloride-calcium and sulfate facies are the most dominant in sampling periods for dam water, resulting in poor water quality for irrigation. In addition, water is, therefore, highly mineralized and is likely to be suitable for irrigation of certain species (cucumbers...) that are well tolerant to salt and on well-drained and leached soils.


2019 ◽  
Vol 8 (4) ◽  
pp. 3444-3448

there basic need of human being that is food, shelter and Cloth. So as In food water is very important after air, around 72% of earth surface is covered with water but among them only few percentage of source are available for drinking and other domestic purposed. Sub-Surface water is one of the most priceless naturally occurring things which balance human health and development of ecology. In this research find out safe drinking water source in Ghot village of Gadchiroli district. Also find determine chipset filtration process required other drinking water sources so that people from Ghot village are easily use this water for drinking and domestic purposed. With the help of sample analysis from different location of Ghot village are tested in laboratory and check with BIS and WHO standards. Water quality guidelines provide a threshold value for each parameter for drinking water. It is necessary that the quality of drinking water should be checked at regular time intervals, because due to the use of contaminated drinking water, the human population suffers from various water borne diseases. There are some parameters of drinking water quality parameters like World Health Organization (WHO) and Indian Standard IS 12500: 2012. The objectives of this study are to analyses the underground water quality of Ghot Village of Gadchiroli region by water quality index. In this research 11 sample point location were selected on five parameter which are essential for check for quality. Physico-chemical parameters such as PH, Turbidity, Total Hardness, Fluoride and Total Dissolved Solids collected different place like boar well, pond, River etc. In this study find out the range of water quality index so that treatment on water can be perform properly on respective drinking water source


2020 ◽  
Vol 10 (11) ◽  
Author(s):  
Asif Mahmud ◽  
Shraboni Sikder ◽  
Jagadish Chandra Joardar

Abstract Valuation of water quality index (WQI) is one of the simplest, easily understandable, and efficacious techniques to evaluate the quality and suitability of water for drinking as well as other purposes. This research was aimed to investigate the drinking water quality of tube wells from different areas in Khulna City, Bangladesh, by developing the WQI. Water samples from 59 tube wells were collected from different locations during the pre-monsoon time. pH, electric conductivity (EC), dissolve oxygen (DO), total dissolved solid (TDS), chloride (Cl−), nitrate (NO3−), and total hardness of the collected water samples were analyzed for the calculation of WQI. The mean value for pH, EC, DO, TDS, Cl−1, NO3−, and total hardness was 7.30, 1650 μS/cm, 1.60 mg/l, 1188.7 mg/l, 414.6 mg/l, 0.029 mg/l, and 52.03 mg/l, respectively. The calculated WQI values for individual places were distributed spatially through mapping by using ArcGIS software. Based on the WQI values, the drinking water was categorized into excellent, good, poor, very poor, and unfit for drinking purposes. The calculated WQI values ranged from 40.11 to 454.37 with an average value of 108.94. Among all the groundwater samples, 11.86% were excellent, 54.24% were good, 23.73% were poor, 1.69% were very poor, and 8.47% were unfit for drinking purpose based on WQI. The results showed that the groundwater quality of most of the studied areas of Khulna city could be considered safe and suitable for drinking barring the elevated EC and chloride content in some areas. Since Khulna city is situated in the southwestern part of Bangladesh and gradually approaches toward the base level of the Bay of Bengal which might be the source of salt concentration in the groundwater of Khulna city, Bangladesh.


Author(s):  
Ghorban Asgari ◽  
Ensieh Komijani ◽  
Abdolmotaleb Seid-Mohammadi ◽  
Mohammad Khazaei

Author(s):  
Jyotsana Pandit ◽  
S. K. Bhardwaj

The studies of surface water quality of urban areas has become a major environmental challenge. In effect these aquatic ecosystems are increasingly under strong anthropogenic pressure. This fact causes the deteriorations of their quality and biodiversity. That seems the cases of the surface water of Solan District. Known the importance of these ecosystems in socio-economic activities of this district, it is important to lead studies for water qualities assessment. So, the surface water quality of urban areas of Solan District was assessed using the water quality index (WQI).To realize this objective, water samples were collected from five urban areas (Arki, Baddi, Nalagarh, Parwanoo, Solan) during the summer and winter seasons and were analyzed for major physicochemical parameters, viz. pH, EC, turbidity, TDS, BOD, COD, DO,As, Cr, Zn, Pb, Cd, to determine its suitability for drinking and domestic purposes. In surface water pH, EC, turbidity, TDS, BOD, COD, DO were found in the range of 6.74-7.55, 0.294-0.506 dS m-1,3.71-7.79 NTU, 105.51-253.26 mg l-1, 1.51-3.14 mg l-1,101.79-166.88 mg l-1, 4.16-6.58 mg l-1 consequently. Trace elements Pb, Cr, Zn, As, Cd, were found in the range of 0.04-0.28 mg l-1, 0.034-0.063 mg l-1, 0.22-0.46 mg l-1, 0.004-0.020 mg l-1 and 0.002-0.008 mg l-1 respectively. All water quality parameters except Pb, Cr, Cd were within the permissible limits. Out of all urban areas WQI of Arki (33) and Solan (46) was categorized as good. Whereas WQI of Parwanoo, Baddi and Nalagarh was 69, 62, 57 respectively and was categorized as poor, indicating negative impacts o urbanization and industrialization. The study indicated that urbanization in the district has started impacting surface water sources, therefore bregular quality monitoring is required and for sustainable urbanization the implementation of stringent rules and guidelines are needed to enhance health and preserve them for future generations.


2019 ◽  
Vol 29 (3) ◽  
pp. 16
Author(s):  
Salam Hussein Ewaid ◽  
Turki Diwan Hussein ◽  
Faiza Kadhim Emran

This study aimed to develop a new water quality index for routine assessment of the river water quality for drinking purpose based on fuzzy logic artificial intelligence method. Four water quality parameters were involved in light of their significance to Iraqi waters, these parameters are biological oxygen demand, and total dissolved solids, total hardness, and fecal coliform. Fuzzy logic inference system with specific rules was developed by Matlab software using Mamdani fuzzy logic Max–Min inference system method. To evaluate the performance of this new fuzzy water quality index (FWQI), tests were conducted using the Iraqi standards for drinking water quality and the 2017 data set of Tigris River within Baghdad. Results revealed the FWQI ability to assess the water quality of Tigris River during the period of the study and that the method of fuzzy inference system was a simple, valuable and applied water quality evaluation tool for human drinking water of Iraqi rivers.


2010 ◽  
Vol 14 (5) ◽  
pp. 517-522 ◽  
Author(s):  
Christiane Coletti ◽  
Roberto Testezlaf ◽  
Túlio A. P. Ribeiro ◽  
Renata T. G. de Souza ◽  
Daniela de A. Pereira

The evaluation of environmental effects generated by agricultural production on water quality became essential in Brazil after the creation of policies for the use and conservation of water resources. For such, water quality indices have been considered with the purpose of showing the spatial and temporal variation of water quality in a watershed. The objective of this study was to develop a water quality index (WQI) applying the Multivariate Factorial Analysis (MFA) statistical technique, which could indicate the influence of agricultural activities in the quality of water resources. Water in a predominantly farm watershed was monitored from Sept. 2003 to Sept. 2004. Monthly water collections were carried out at six sample points, and eight parameters were analyzed: nitrate, ammoniacal nitrogen, ammonia, total phosphorus, electrical conductivity, pH, suspended solids and turbidity, which were considered important due to the agricultural management adopted in the region. Results indicated a contamination of agricultural origin along the basin. Factorial analysis showed that ammonia, ammoniacal nitrogen and nitrate parameters were the ones that most contributed in determining the WQI.


Sign in / Sign up

Export Citation Format

Share Document