scholarly journals Flow characteristics of epoxy resin systems for low pressure transfer molding.

1986 ◽  
Vol 43 (12) ◽  
pp. 873-879 ◽  
Author(s):  
Junichi SAEKI ◽  
Aizo KANEDA ◽  
Tadao SHINODA
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Yicheng Sun ◽  
Yufan Fu ◽  
Baohui Chen ◽  
Jiaxing Lu ◽  
Wanquan Deng

In order to study the internal flow characteristics and external droplet velocity distribution characteristics of the swirl nozzle, the following methods were used: numerical simulations were used to study the internal flow characteristics of a swirl nozzle and phase Doppler particle velocimetry was used to determine the corresponding external droplet velocity distribution under medium and low pressure conditions. The distributions of pressure and water velocity inside the nozzle were obtained. Meanwhile, the velocities of droplets outside the nozzle in different sections were discussed. The results show that the flow rate in the swirl nozzle increases with the increase in inlet pressure, and the local pressure in the region decreases because of the excessive velocity at the internal outlet section of the swirl nozzle, resulting in cavitation. The experimental results show that under an external flow field, the minimum droplet velocity occurs in the axial direction; starting from the axis, the velocity first increases and then decreases along the radial direction. Swirling motion inside the nozzle and velocity variations in the external flow field occur under medium and low pressure conditions. The relationship between the inlet pressure and the distributions of water droplets’ velocities was established, which provides a reference for the research and development of the swirl nozzle.


Author(s):  
Shashank Mishra ◽  
Shaaban Abdallah ◽  
Mark Turner

Multistage axial compressor has an advantage of lower stage loading as compared to a single stage. Several stages with low pressure ratio are linked together which allows for multiplication of pressure to generate high pressure ratio in an axial compressor. Since each stage has low pressure ratio they operate at a higher efficiency and the efficiency of multi-stage axial compressor as a whole is very high. Although, single stage centrifugal compressor has higher pressure ratio compared with an axial compressor but multistage centrifugal compressors are not as efficient because the flow has to be turned from radial at outlet to axial at inlet for each stage. The present study explores the advantages of extending the axial compressor efficient flow path that consist of rotor stator stages to the centrifugal compressor stage. In this invention, two rotating rows of blades are mounted on the same impeller disk, separated by a stator blade row attached to the casing. A certain amount of turning can be achieved through a single stage centrifugal compressor before flow starts separating, thus dividing it into multiple stages would be advantageous as it would allow for more flow turning. Also the individual stage now operate with low pressure ratio and high efficiency resulting into an overall increase in pressure ratio and efficiency. The baseline is derived from the NASA low speed centrifugal compressor design which is a 55 degree backward swept impeller. Flow characteristics of the novel multistage design are compared with a single stage centrifugal compressor. The flow path of the baseline and multi-stage compressor are created using 3DBGB tool and DAKOTA is used to optimize the performance of baseline as well novel design. The optimization techniques used are Genetic algorithm followed by Numerical Gradient method. The optimization resulted into improvements in incidence and geometry which significantly improved the performance over baseline compressor design. The multistage compressor is more efficient with a higher pressure ratio compared with the base line design for the same work input and initial conditions.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
R. Pichler ◽  
R. D. Sandberg ◽  
V. Michelassi ◽  
R. Bhaskaran

In the present paper, direct numerical simulation (DNS) data of a low-pressure turbine (LPT) are investigated in light of turbulence modeling. Many compressible turbulence models use Favre-averaged transport equations of the conservative variables and turbulent kinetic energy (TKE) along with other modeling equations. First, a general discussion on the turbulence modeling error propagation prescribed by transport equations is presented, leading to the terms that are considered to be of interest for turbulence model improvement. In order to give turbulence modelers means of validating their models, the terms appearing in the Favre-averaged momentum equations are presented along pitchwise profiles at three axial positions. These three positions have been chosen such that they represent regions with different flow characteristics. General trends indicate that terms related with thermodynamic fluctuations and Favre fluctuations are small and can be neglected for most of the flow field. The largest errors arise close to the trailing edge (TE) region where vortex shedding occurs. Finally, linear models and the scope for their improvement are discussed in terms of a priori testing. Using locally optimized turbulence viscosities, the improvement potential of widely used models is shown. On the other hand, this study also highlights the danger of pure local optimization.


Author(s):  
Satoshi Miyake ◽  
Satoru Yamamoto ◽  
Yasuhiro Sasao ◽  
Kazuhiro Momma ◽  
Toshihiro Miyawaki ◽  
...  

A numerical study simulating unsteady 3-D wet-steam flows through three-stage stator-rotor blade rows in a low-pressure steam turbine model experimentally conducted by Mitsubishi Heavy Industry (MHI) was presented in the last ASME Turbo Expo by our group. In this study, the previous discussion is extended to the discussion how nonequilibrium condensation is influenced by unsteady wakes and corner vortices from prefaced multi-stage blade rows. Unsteady 3-D flows through three-stage stator-rotor blade rows are simulated assuming nonequilibrium condensation. Flows with a different inlet flow condition are calculated and the results are compared with each other. Instantaneous condensate mass fractions are visualized at different spans and cross sections in the three-stage stator and rotor blade rows. Also the time and space dependent values are plotted and the obtained unsteady flow characteristics are explained.


2012 ◽  
Vol 496 ◽  
pp. 347-350
Author(s):  
Qing Min Zhao ◽  
Xiang An Yue ◽  
Fei Wang

The flow characteristics of nitrogen in microtubes with diameters of 14.9, 10.1, 5.03 and 2.05μm are investigated experimentally under high pressure conditions. The results show that the high pressure flow characteristics of nitrogen in microtube with the diameter of 14.9μm are in accordance with the classical fluid mechanics theory. However, with the decrease of the inner diameter of microtube, gas flow shows an apparent microscale effect and the results depart from the theoretical predictions of the conventional theory, moreover the smaller the diameter, the stronger the microscale effect. Besides, the high pressure microscale effect can not be characterized by the Knudsen number, which is proposed for studying rarefaction effect at low-pressure. Because of the existence of high-pressure microscale effect, it is inappropriate to study the real gas seepage characteristic in reservoir through the flow experiment at low pressure.


Sign in / Sign up

Export Citation Format

Share Document