scholarly journals High-intensity exercise improves cognitive function and hippocampal brain-derived neurotrophic factor expression in obese mice maintained on high-fat diet

2020 ◽  
Vol 16 (2) ◽  
pp. 124-131 ◽  
Author(s):  
Tae-Won Kim ◽  
Kyung-Wan Baek ◽  
Hak Sun Yu ◽  
Il-Gyu Ko ◽  
Lakkyong Hwang ◽  
...  
2019 ◽  
Vol 4 (4) ◽  
pp. 2473011419S0040
Author(s):  
Chris Stauch ◽  
Jesse King ◽  
Morgan Kim ◽  
David Waning ◽  
John Elfar ◽  
...  

Category: Diabetes, Hindfoot, Midfoot/Forefoot, obesity Introduction/Purpose: In recent decades, the prevalence of obesity in the United States has increased dramatically. This can be attributed in-part to the high-fat “Western Diet”. Consequentially, the economic burden of obesity to the healthcare system has rapidly increased, accounting for more than 10 percent of all medical spending in America. Furthermore, with regards to orthopedics, obesity has been shown to be a strong risk factor for musculoskeletal pain, injury, and post-operative complications. The purpose of this study was to determine the effects of high intensity cardiovascular training and controlled dietary intake on body weight, body fat percentage (BFP), and bone mineral density (BMD) in obese and non-obese mice. These results will provide a better understanding of how to optimally facilitate weight loss in obese patients. Methods: Following IAUCUC approval, 8 diet-induced obesity (DIO) C57BL/6 mice were obtained along with 6 non-obese C57BL/6 control mice. DIO mice were fed a high-fat diet (60% fat by kcal) ad libitum starting at the age of 6 weeks. Control mice were fed a standard low-fat diet (10% fat by kcal) ad libitum from birth. Starting at the age of 14 weeks, all mice underwent a controlled high intensity cardiovascular training protocol using a treadmill four times per week at 30 minute intervals. This was carried out for seven weeks including a one-week acclimation period. Speed, distance, and time spent running were all constant between groups. Mouse body weights were recorded several times per week throughout the study. Additionally, BFP and BMD were obtained bi-weekly using dual energy X-ray absorptiometry (DEXA) to assess morphophysiological changes longitudinally. Results: Preliminary investigations with a controlled exercise regimen reveal that obese mice, when fed a high-fat diet, continue to gain weight rapidly despite high intensity cardiovascular training whereas control mice maintain their weight. Following the seven-week training period, control mice gained an average of 1.25 g (p=0.41), while DIO mice gained an average of 8.55 g (p<0.001). DIO mice also showed an 8.74% increase in body fat percentage (p=0.002) while control mice showed a 0.51% decrease in body fat percentage (p=0.75). Lastly, BMD was significantly lower in DIO mice compared to controls following the exercise protocol (p<0.05). Conclusion: The results of this study support the hypothesis that a controlled exercise regimen alone is ineffective for facilitating weight loss. In fact, obese mice administered a high-fat diet actually gain weight despite undergoing a rigorous exercise program. Additionally, simple differences in dietary intake have significant effects on body weight, body fat percentage, and bone mineral density. This suggests that while exercise may play a small role in maintaining a normal weight, obesity is irreversible with exercise alone. Obese orthopedic patients should be counseled on dietary modifications before engaging in an exercise program.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Iberê Machado Kostrycki ◽  
Guilherme Wildner ◽  
Yohanna Hannah Donato ◽  
Analú Bender dos Santos ◽  
Lílian Corrêa Costa Beber ◽  
...  

Obesity, air pollution, and exercise induce alterations in the heat shock response (HSR), in both intracellular 70 kDa heat shock proteins (iHSP70) and the plasmatic extracellular form (eHSP72). Extra-to-intracellular HSP70 ratio (H-index = eHSP70/iHSP70 ratio) represents a candidate biomarker of subclinical health status. This study investigated the effects of moderate- and high-intensity exercise in the HSR and oxidative stress parameters, in obese mice exposed to fine particulate matter (PM2.5). Thirty-day-old male isogenic B6129F2/J mice were maintained for 16 weeks on standard chow or high-fat diet (HFD). Then, mice were exposed to either saline or 50 μg of PM2.5 by intranasal instillation and subsequently maintained at rest or subjected to moderate- or high-intensity swimming exercise. HFD mice exhibited high adiposity and glucose intolerance at week 16th. HFD mice submitted to moderate- or high-intensity exercise were not able to complete the exercise session and showed lower levels of eHSP70 and H-index, when compared to controls. PM2.5 exposure modified the glycaemic response to exercise and modified hematological responses in HFD mice. Our study suggests that obesity is a critical health condition for exercise prescription under PM2.5 exposure.


Author(s):  
Rubén Fernández-Rodríguez ◽  
Celia Álvarez-Bueno ◽  
Isabel A Martínez-Ortega ◽  
Vicente Martínez-Vizcaíno ◽  
Arthur Eumann Mesas ◽  
...  

Medicina ◽  
2020 ◽  
Vol 56 (7) ◽  
pp. 331 ◽  
Author(s):  
Ju Yong Bae

Background and Objectives: The purpose of this study was to elucidate the effects of different exercise intensities in preventing the decline of cognitive function and lipolysis associated with a high-fat diet-induced obesity in growing mice. Material and Methods: Forty male C57BL/6 mice, aged 4 weeks, were divided into the normal diet (CO, n = 10) and high-fat diet (HF, n = 30) groups to induce obesity for 8 weeks. Subsequently, the HF group was subdivided equally into the HF, HF + low-intensity training (HFLT), and HF + high-intensity training (HFHT) groups, and mice were subjected to treadmill training for 8 weeks. Results: Following the 8-week training intervention, body weight and fat mass were significantly lower in the training groups than in the HF group (p < 0.05). Adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), and monoglyceride lipase levels were significantly higher in the training groups than in the HF group (p < 0.05), and the ATGL and HSL levels were significantly higher in the HFHT group than in the HFLT group (p < 0.05). The Y-maze test showed that the training groups had a higher number of total entries and percent alternation than the HF group (p < 0.05). Hippocampal nerve growth factor, brain-derived neurotrophic factor, and neurotrophin-3 levels were significantly higher in the training group than in the HF group (p < 0.05). However, there was no significant difference according to the exercise intensity among the groups. Conclusions: The results of this study suggested that low-intensity exercise is as effective as a high-intensity exercise in preventing the decline of cognitive function and lipolysis, and far more effective in terms of an expected efficiency of workload and prevention of side effects.


2015 ◽  
Vol 35 (7) ◽  
pp. 1061-1071 ◽  
Author(s):  
Dongmei Wang ◽  
Junqiang Yan ◽  
Jing Chen ◽  
Wenlan Wu ◽  
Xiaoying Zhu ◽  
...  

Endocrinology ◽  
2011 ◽  
Vol 152 (7) ◽  
pp. 2634-2643 ◽  
Author(s):  
Nobuko Yamada ◽  
Goro Katsuura ◽  
Yukari Ochi ◽  
Ken Ebihara ◽  
Toru Kusakabe ◽  
...  

Recent epidemiological studies indicate that obesity increases the incidence of depression. We examined the implication of leptin for obesity-associated depression. Leptin induced antidepressive behavior in normal mice in a forced swimming test (FST), and leptin-overexpressing transgenic mice with hyperleptinemia exhibited more antidepressive behavior in the FST than nontransgenic mice. In contrast, leptin-deficient ob/ob mice showed more severe depressive behavior in the FST than normal mice, and leptin administration substantially ameliorated this depressive behavior. Diet-induced obese (DIO) mice fed a high-fat diet showed more depressive behavior in the FST and in a sucrose preference test compared with mice fed a control diet (CD). In DIO mice, leptin induced neither antidepressive action nor increment of the number of c-Fos immunoreactive cells in the hippocampus. Diet substitution from high-fat diet to CD in DIO mice ameliorated the depressive behavior and restored leptin-induced antidepressive action. Brain-derived neurotrophic factor concentrations in the hippocampus were significantly lower in DIO mice than in CD mice. Leptin administration significantly increased hippocampal brain-derived neurotrophic factor concentrations in CD mice but not in DIO mice. The antidepressant activity of leptin in CD mice was significantly attenuated by treatment with K252a. These findings demonstrated that leptin induces an antidepressive state, and DIO mice, which exhibit severe depressive behavior, did not respond to leptin in both the FST and the biochemical changes in the hippocampus. Thus, depression associated with obesity is due, at least in part, to impaired leptin activity in the hippocampus.


Sign in / Sign up

Export Citation Format

Share Document