scholarly journals Effects of Well Fluids Characteristics on the Design of Offshore Gas Production System: Case Studies of Western Australian Gas Fields

Author(s):  
Jakyung Kim ◽  
Dong Woo Yang ◽  
Daejun Chang ◽  
Jong-Se Lim ◽  
Yutaek Seo
2018 ◽  
Vol 5 ◽  
pp. 11-26
Author(s):  
Oleksandr Filipchuk ◽  
Victor Marushchenko ◽  
Mikhailo Bratakh ◽  
Myroslav Savchuk ◽  
Safaa Tarwat

To date, Ukraine's mature gas fields, which are being developed in the gas regime, are at the final stage of development, which is characterized by a significant depletion of reservoir energy. The final stage of development requires solving complex problems related to watering wells, destruction of the reservoir, removal of formation water and mechanical impurities, increasing back pressure in the system, as well as the moral and physical wear and tear of industrial equipment. In the conditions of falling gas production, a significant part of the operating well stock is unstable, in the mode of unauthorized stops due to the accumulation of liquid at the bottom and insufficient gas velocities for removal to the surface, and also the accumulation of the liquid phase in the lowered places of the gas gathering system. Within the framework of the conducted studies, the gas dynamic models of the operation of the gas collection system of 3 oil/gas-condensate fields (OGCF) are created. A single model of the gas production system "reservoir - well - gas gathering system - inter-field gas pipeline - main facilities" is built. The current efficiency of the gas production, collection and transportation system is assessed. On the basis of model calculations, the current production capabilities of the wells are defined, as well as the "narrow" places of the system. It is established that the introduction of modern technologies for the operation of watered wells without optimizing the operation of the entire gas production system is irrational, since the liquid that is carried out from the wellbore will accumulate in the plumes and increase the back pressure level in the ground part. In conditions of increasing gas sampling, liquid flowlines can be taken out of the loops and deactivated the separation equipment. The feasibility of introducing methods for optimizing the operation modes of the gas production - gathering and transportation system is estimated, which allows choosing the optimal method for increasing the efficiency and reliability of its operation. For the first time in the Ukrainian gas industry, an integrated model of the field is created as a single chain of extraction, collection, preparation and transportation of natural gas, which can be adapted for the development and arrangement of both new and mature deposits. The main advantage of the application for the hydrocarbon production sector is the simulation of the processes, which makes it possible to evaluate the operating mode of the well in the safe zone while reducing the working pressure and introducing various intensification methods, and also to estimate the increase in hydrocarbon production. For the equipment of the ground infrastructure – "midstream" – the main advantage is a reduction in the time required to perform design calculations for gas pipelines, trains and pipelines for transporting multiphase media using public models. The creation and use of integrated models of gas fields gives an understanding of the integral picture of available resources and ensures an increase in the efficiency of field development management. The results of the calculation are clearly correlated with the actual data, which makes it possible to use the models constructed to obtain numerical results.


SPE Journal ◽  
2010 ◽  
Vol 15 (02) ◽  
pp. 417-425 ◽  
Author(s):  
Hui-June Park ◽  
Jong-Se Lim ◽  
Jeongyong Roh ◽  
Joo M. Kang ◽  
Bae-Hyun Min

2015 ◽  
Vol 50 (1) ◽  
pp. 29-38 ◽  
Author(s):  
MS Shah ◽  
HMZ Hossain

Decline curve analysis of well no KTL-04 from the Kailashtila gas field in northeastern Bangladesh has been examined to identify their natural gas production optimization. KTL-04 is one of the major gas producing well of Kailashtila gas field which producing 16.00 mmscfd. Conventional gas production methods depend on enormous computational efforts since production systems from reservoir to a gathering point. The overall performance of a gas production system is determined by flow rate which is involved with system or wellbore components, reservoir pressure, separator pressure and wellhead pressure. Nodal analysis technique is used to performed gas production optimization of the overall performance of the production system. F.A.S.T. Virtu Well™ analysis suggested that declining reservoir pressure 3346.8, 3299.5, 3285.6 and 3269.3 psi(a) while signifying wellhead pressure with no changing of tubing diameter and skin factor thus daily gas production capacity is optimized to 19.637, 24.198, 25.469, and 26.922 mmscfd, respectively.Bangladesh J. Sci. Ind. Res. 50(1), 29-38, 2015


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 182-182
Author(s):  
Marjorie A Killerby ◽  
Diego Zamudio ◽  
Kaycee Ames ◽  
Darren D Henry ◽  
Thomas Schwartz ◽  
...  

Abstract This study evaluated the effects of preservatives on the in vitro fermentation measures of wet brewer’s grain (WBG) silage at different stages of storage. Treatments (TRT) were sodium lignosulfonate at 1% (NaL1) and 2% (NaL2; w/w of fresh WBG), propionic acid (PRP; 0.5% w/w of fresh WBG), a combination inoculant (INO; Lactococcus lactis and Lactobacillus buchneri each at 4.9 log cfu/fresh WBG g), and untreated WBG (CON). WBG (Fresh) were packed into 8.8 L mini-silos and stored for 60 d at 21°C (Ensiled), then they were opened and aerobically exposed for 10d (AES). Samples from each stage of storage (STG; Fresh, Ensiled and AES) were analyzed for in vitro ruminal digestibility (24 h).Gas kinetics were recorded using the Ankom RF Gas Production System. Data were analyzed as a randomized complete block design (5 blocks) with a 5 (TRT) × 3 (STG) factorial arrangement. Apparent in vitro DM digestibility (DMD) decreased across STG, (51.5, 47.2 and 40.9 for Fresh, Ensiled and AES, respectively) and increased for NaL1, NaL2 and PRP (~47.8) vs. CON (43.0 ± 2.12%). PRP increased apparent in vitro OM digestibility (OMD) when Ensiled (54.5) and NaL2 increased it for AES (47.1) vs CON (46.3 and 39.9 ± 1.73%, respectively). The asymptotic maximal (M) and rate (k) of gas production decreased across STG (214.6, 181.5, 155.1 and 14.6, 12.6, and 9.8, for Fresh, Ensiled and AES, respectively). PRP increased (200.0) and NaL1 decreased (169.3) M vs. CON (183.9± 7.81ml/incubated DM g), while NaL1 and NaL2 (~11.4) decreased k vs. CON (13.4 ± 0.85%/h). Methane concentration and yield were higher in Fresh vs. other STG (0.94 vs. ~0.84 ± 0.07mM and 0.27 vs. ~0.23 ± 0.03mmol/g fermented OM). Spoilage of WBG decreases fermentability and methane production while PRP and NaL improve digestibility with the former also increasing M and k.


2006 ◽  
Author(s):  
Hui-june Park ◽  
Jong-Se Lim ◽  
Jeongyong Roh ◽  
Joo Myung Kang ◽  
Bae-hyun Min

2020 ◽  
Vol 10 (1) ◽  
pp. 17-32
Author(s):  
Manuel Cabarcas Simancas ◽  
Angélica María Rada Santiago ◽  
Brandon Humberto Vargas Vera

The purpose of this article is to set out the benefits of using the dense phase gas transport in future projects in the Caribbean Sea and to verify that when operating pipelines at high pressures, more mass per unit of volume is transported, and liquid formation risks are mitigated in hostile environments and low temperatures.This study contains key data about gas production fields in deep and ultra-deep waters around the world, which serve as a basis for research and provide characteristics for each development to be contrasted with the subsea architecture proposed in this paper. Additionally, analogies are established between the target field (Gorgón-1, Kronos-1 and Purple Angel-1) and other offshore gas fields that have similar reservoir properties. Using geographic information systems, the layout of a gas pipeline and a subsea field architecture that starts in the new gas province is proposed.Finally, using a hydraulic simulation tool, the gas transport performance in dense phase is analyzed and compared with the conventional way of transporting gas by underwater pipelines, achieving up to 20 % in cost savings when dense phase is applied.


2015 ◽  
pp. 99-104 ◽  
Author(s):  
N. L. Mamaeva ◽  
S. A. Petrov

A research and comparison of natural and damaged (due to the active development of oil and gas fields) permafrost soils in the Jamalo-Nenets Autonomous Okrug were carried out. The analysis was run of correlation between an average monthly temperature of air, an average monthly sum of precipitation, the weight humidity and the thickness of the seasonal thawed layer. The conclusions were drawn about a poor resistance of landscapes on the permafrost rocks to the anthropogenic interventions, which in its turn is accompanied by the cryogenic processes and unfavorable influences on the Extreme North biosphere.


Sign in / Sign up

Export Citation Format

Share Document