Behavior of Hybrid Double Skin Concrete Filled Circular Steel Tube Columns

2013 ◽  
Vol 14 (2) ◽  
pp. 191-204 ◽  
Author(s):  
Jin-Kook Kim ◽  
Hyo-Gyoung Kwak ◽  
Ji-Hyun Kwak
Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1434
Author(s):  
Muhammmad Faisal Javed ◽  
Haris Rafiq ◽  
Mohsin Ali Khan ◽  
Fahid Aslam ◽  
Muhammad Ali Musarat ◽  
...  

This experimental study presents concrete-filled double-skin tubular columns and demonstrates their expected advantages. These columns consist of an outer steel tube, an inner steel tube, and concrete sandwiched between two tubes. The influence of the outer-to-inner tube dimension ratio, outer tube to thickness ratio, and type of inner tube material (steel, PVC pipe) on the ultimate axial capacity of concrete-filled double-skin tubular columns is studied. It is found that the yield strength of the inner tube does not significantly affect the ultimate axial capacity of concrete-filled double-skin tubular composites. With the replacement of the inner tube of steel with a PVC pipe, on average, less than 10% strength is reduced, irrespective of size and dimensions of the steel tube. Hence, the cost of a project can be reduced by replacing inner steel tubes with a PVC pipes. Finally, the experimental results are compared with the existing design methods presented in AISC 360-16 (2016), GB51367 (2019), and EC4 (2004). It is found from the comparison that GB51367 (2019) gives better results, followed by AISC (2016) and EC4 (2004).


2021 ◽  
Vol 230 ◽  
pp. 111599
Author(s):  
Jiangang Wei ◽  
Zhitao Xie ◽  
Wei Zhang ◽  
Xia Luo ◽  
Yan Yang ◽  
...  

2020 ◽  
Vol 7 ◽  
Author(s):  
Dingyi Xu ◽  
Zongping Chen ◽  
Chunheng Zhou

This study was conducted to experimentally investigate the behavior of recycled concrete-filled circular steel tube (RCFST) columns subjected to cyclic loading. Ten specimens were prepared and tested. Four parameters were used to characterize seismic behavior: the replacement percentage of recycled coarse aggregate, slenderness ratio, axial compression level, and steel ratio. A novel calculation method for the bearing capacity for RCFST columns is established. The failure processes and modes of RCFST columns are found to be similar to normal concrete-filled steel tube columns. Varying the replacement percentage of recycled coarse aggregate has little effect on the hysteresis curves of the RCFST columns. The RCFST columns also show seismic performance similar to that of concrete-filled steel tubes. The displacement ductility of all specimens is larger than 3.0 and the equivalent viscous damping coefficients corresponding to the ultimate load range from 0.305 to 0.460.


Sign in / Sign up

Export Citation Format

Share Document