2A42 Skin Wound Healing Model Using Collagen Gel Culture and Effects of Mechanical Factor on the Fibroblast Infiltration

Author(s):  
Keisuke CHIBA ◽  
Kaori SHIKANO ◽  
Shogo MIYATA
2020 ◽  
Author(s):  
Delong Ge ◽  
Xiaoxiao Mou ◽  
Liying Liu ◽  
Yanwei Li ◽  
Hui Jiang ◽  
...  

Abstract Background: Interleukin 1 beta (IL-1β) is considered to be a mediator of infectious, inflammatory and autoimmune diseases, and the kinetics of its production is relevant to understanding the pathogenesis of these diseases. Lysophosphatidic acid (LPA), the structurally simplest bioactive phospholipid, is necessary for homeostasis in various physiological and pathophysiological processes and plays a pivotal role in wound healing. Skin trauma can not only weaken the barrier function, but also cause pain and infection. Chronic wounds are characterized by impaired healing and uncontrolled inflammation that damages the protection of the immune system. The aim of this study is to investigate whether inflammatory factor IL-1β has an effect on LPA in the wound healing model. Results: In this study, the kinetics of IL-1β gene expression was studied in vivo and in vitro with a wound healing model by quantitative real-time polymerase chain reaction (qRT-PCR) through LPA treatment. As a result, we found that LPA up-regulated inflammatory factor IL-1β in HaCaT cell and skin wound healing. The pro-inflammatory cytokines IL-1β mRNA had higher expression in LPA-treated mice group 3 days after the treatment. In vitro, after the treatment with LPA (20 μM) for 6, 12, and 24 hours, IL-1β mRNA expression increased by 61.16%, 129.39%, and 117.07%, respectively. Conclusion: These results strongly suggest that IL-1β may regulate LPA-accelerated skin wound healing. IL-1β has significant efficacy, and our observations are of interest to the development of drugs targeting LPA in skin therapy.


BIO-PROTOCOL ◽  
2015 ◽  
Vol 5 (22) ◽  
Author(s):  
Camila Moreira ◽  
Puebla Cassini-Vieira ◽  
Mariana da Silva ◽  
Luc�ola da Barcelos

2015 ◽  
Vol 47 (3) ◽  
pp. 257-265 ◽  
Author(s):  
Yvonne Marquardt ◽  
Philipp M. Amann ◽  
Ruth Heise ◽  
Katharina Czaja ◽  
Timm Steiner ◽  
...  

2011 ◽  
Vol 113 (1) ◽  
pp. 100-109 ◽  
Author(s):  
Rita Negrão ◽  
Raquel Costa ◽  
Delfim Duarte ◽  
Tiago Taveira Gomes ◽  
Pedro Coelho ◽  
...  

2022 ◽  
Vol 13 ◽  
pp. 204173142110630
Author(s):  
Peng Chang ◽  
Shijie Li ◽  
Qian Sun ◽  
Kai Guo ◽  
Heran Wang ◽  
...  

Traditional tissue engineering skin are composed of living cells and natural or synthetic scaffold. Besize the time delay and the risk of contamination involved with cell culture, the lack of autologous cell source and the persistence of allogeneic cells in heterologous grafts have limited its application. This study shows a novel tissue engineering functional skin by carrying minimal functional unit of skin (MFUS) in 3D-printed polylactide-co-caprolactone (PLCL) scaffold and collagen gel (PLCL + Col + MFUS). MFUS is full-layer micro skin harvested from rat autologous tail skin. 3D-printed PLCL elastic scaffold has the similar mechanical properties with rat skin which provides a suitable environment for MFUS growing and enhances the skin wound healing. Four large full-thickness skin defects with 30 mm diameter of each wound are created in rat dorsal skin, and treated either with tissue engineering functional skin (PLCL + Col + MFUS), or with 3D-printed PLCL scaffold and collagen gel (PLCL + Col), or with micro skin islands only (Micro skin), or without treatment (Normal healing). The wound treated with PLCL + Col + MFUS heales much faster than the other three groups as evidenced by the fibroblasts migration from fascia to the gap between the MFUS dermis layer, and functional skin with hair follicles and sebaceous gland has been regenerated. The PLCL + Col treated wound heals faster than normal healing wound, but no skin appendages formed in PLCL + Col-treated wound. The wound treated with micro skin islands heals slower than the wounds treated either with tissue engineering skin (PLCL + Col + MFUS) or with PLCL + Col gel. Our results provide a new strategy to use autologous MFUS instead “seed cells” as the bio-resource of engineering skin for large full-thickness skin wound healing.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1561
Author(s):  
Liubov Safonova ◽  
Maria Bobrova ◽  
Anton Efimov ◽  
Alexey Lyundup ◽  
Olga Agapova ◽  
...  

A comparative analysis of the structure and biological properties of silk fibroin constructions was performed. Three groups of constructions were obtained: films obtained by casting an aqueous solution of silk fibroin and electrospun microfibrous scaffolds based on silk fibroin, with the addition of 30% gelatin per total protein weight. The internal structures of the films and single fibers of the microfibrous scaffolds consisted of densely packed globule structures; the surface area to volume ratios and volume porosities of the microfibrous scaffolds were calculated. All constructions were non-toxic for cells and provide high levels of adhesion and proliferation. The high regenerative potential of the constructions was demonstrated in a rat full-thickness skin wound healing model. The constructions accelerated healing by an average of 15 days and can be considered to be promising constructions for various tasks of tissue engineering and regenerative medicine.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2819 ◽  
Author(s):  
Fernando Pereira Beserra ◽  
Meilang Xue ◽  
Gabriela Maia ◽  
Ariane Leite Rozza ◽  
Cláudia Helena Pellizzon ◽  
...  

Skin wound healing is a dynamic and complex process involving several mediators at the cellular and molecular levels. Lupeol, a phytoconstituent belonging to the triterpenes class, is found in several fruit plants and medicinal plants that have been the object of study in the treatment of various diseases, including skin wounds. Various medicinal properties of lupeol have been reported in the literature, including anti-inflammatory, antioxidant, anti-diabetic, and anti-mutagenic effects. We investigated the effects of lupeol (0.1, 1, 10, and 20 μg/mL) on in vitro wound healing assays and signaling mechanisms in human neonatal foreskin keratinocytes and fibroblasts. Results showed that, at high concentrations, Lupeol reduced cell proliferation of both keratinocytes and fibroblasts, but increased in vitro wound healing in keratinocytes and promoted the contraction of dermal fibroblasts in the collagen gel matrix. This triterpene positively regulated matrix metalloproteinase (MMP)-2 and inhibited the NF-κB expression in keratinocytes, suggesting an anti-inflammatory effect. Lupeol also modulated the expression of keratin 16 according to the concentration tested. Additionally, in keratinocytes, lupeol treatment resulted in the activation of Akt, p38, and Tie-2, which are signaling proteins involved in cell proliferation and migration, angiogenesis, and tissue repair. These findings suggest that lupeol has therapeutic potential for accelerating wound healing.


Sign in / Sign up

Export Citation Format

Share Document