1011 The optimization design of the artificial lung using MOPSO : Examination of the correlatively of each objective function and design variables

2009 ◽  
Vol 2009 (0) ◽  
pp. 273-274
Author(s):  
Hirokazu masuda ◽  
Ryo Yokoi ◽  
Akio Funakubo ◽  
Yasuhiro Fukui
2009 ◽  
Vol 626-627 ◽  
pp. 693-698
Author(s):  
Yong Yong Zhu ◽  
S.Y. Gao

Dynamic balance of the spatial engine is researched. By considering the special wobble-plate engine as the model of spatial RRSSC linkages, design variables on the engine structure are confirmed based on the configuration characters and kinetic analysis of wobble-plate engine. In order to control the vibration of the engine frame and to decrease noise caused by the spatial engine, objective function is choosed as the dimensionless combinations of the various shaking forces and moments, the restriction condition of which presents limiting the percent of shaking moment. Then the optimization design is investigated by the mathematical model for dynamic balance. By use of the optimization design method to a type of wobble-plate engine, the optimization process as an example is demonstrated, it shows that the optimized design method benefits to control vibration and noise on the engines and improve the performance practically and theoretically.


2014 ◽  
Vol 721 ◽  
pp. 464-467
Author(s):  
Tao Fu ◽  
Qin Zhong Gong ◽  
Da Zhen Wang

In view of robustness of objective function and constraints in robust design, the method of maximum variation analysis is adopted to improve the robust design. In this method, firstly, we analyses the effect of uncertain factors in design variables and design parameters on the objective function and constraints, then calculate maximum variations of objective function and constraints. A two-level optimum mathematical model is constructed by adding the maximum variations to the original constraints. Different solving methods are used to solve the model to study the influence to robustness. As a demonstration, we apply our robust optimization method to an engineering example, the design of a machine tool spindle. The results show that, compared with other methods, this method of HPSO(hybrid particle swarm optimization) algorithm is superior on solving efficiency and solving results, and the constraint robustness and the objective robustness completely satisfy the requirement, revealing that excellent solving method can improve robustness.


2010 ◽  
Vol 148-149 ◽  
pp. 1726-1729
Author(s):  
Qi Bing Wang ◽  
Zhi Ming Wang ◽  
An Hua Peng

The objective function is the same flow speed of each sub-filed of product section at exit of the extrusion die for the complexity of hollow polymer profile, and design variables are impact on the flow uniformity of the space above the compression, the example based on finite element numerical simulation and based on the CAD/CAE/ERP database system, the result showed the velocity is obviously improved after the optimization, well positioned to meet the requirements of customer.


2011 ◽  
Vol 306-307 ◽  
pp. 1504-1507 ◽  
Author(s):  
Xin Hai Zhao ◽  
Guo Qun Zhao ◽  
Xiao Hui Huang ◽  
Yi Guo Luan

In order to decrease the cost of the material and energy during the forging process, multiple preform die shape optimization design was carried out in this paper. Based on the FEM, a sensitivity analysis method was used to perform the optimization procedure. The shape of the forging and deforming force of the final forging was used to express the cost of material and energy respectively. Using the weighted sum method, the total objective function was gotton. The coordinates of the control point of the B-spline used to represent the preform die shape was determined as the optimization design variable. The sensitivity equations of the total objective function with respect to the design variables was developed. The multiple objective perform design optimization software was developed by FORTRAN language. And then, the preform die shape of an H-shaped forging process is optimized. The total objective function, sub-objective function, the shape of the preform die and the final forging during the optimization were given. After the optimiztion, a near net shape forging was obtained. At the same time, the deforming force decreased. The optimization results are very satisfactory.


2013 ◽  
Vol 273 ◽  
pp. 198-202
Author(s):  
Yu Xia Wang

In a given power P, number of teeth than u, input speed and other technical conditions and requirements, find out a set of used a economic and technical indexes reach the optimal design parameters, realize the optimization design of the reducer, This paper determined unipolar standard spur gear reducer design optimization of the design variables, and then determine the objective function, determining constraint function, so as to establish the mathematical model.


Author(s):  
Ghassem Faezian ◽  
Ahmad Darabi ◽  
Nader Sargolzaei

Purpose This study aims to design the rotor geometry of switched reluctance motor (SRM) in a completely flexible way. In the proposed method, there is no default geometry for the rotor. The initial geometry of the rotor can start from a circle or any other shape and depending on the required performance takes the final shape during the optimal design. In this way, the best performance, possible with geometric design, can be achieved. Design/methodology/approach The rotor boundary of a 4/2 SRM is defined by a few B-splines. Some control points are located around the rotor and changing their locations causes customized changes in the rotor boundary. Locations of these points are defined as design variables. A 2-D finite element analysis using MATLAB/PDE is applied to the SRM model and sensitivity analysis is used to optimization design by means of minimizing of objective function. Findings The proposed method has many more capabilities for matching different objective functions. For the suggested objective function, while the conventional rotor torque profile difference with the desired torque profile reaches 40%, this difference for B-spline rotor is about 17%. Experimental results from a prototype motor have a close agreement with analysis results. Originality/value The B-splines have been used to design machines and electromagnetic devices. However, this method is used for the first time in design of the whole rotor of a SRM.


2011 ◽  
Vol 295-297 ◽  
pp. 1326-1329
Author(s):  
Wen Hui Mo

Reliability optimization design of the gear box is proposed. It includes an objective function, 30 design variables and 52 constraints. It is important to note that material properties, geometry parameters and applied loads of the structure are assumed to be normal random variables. Reliability calculation adopts the HL-RF method. The comparison of design parameters demonstrates the proposed method.


2014 ◽  
Vol 621 ◽  
pp. 227-232
Author(s):  
Quan Ying Sun ◽  
Yi Li Wang ◽  
Xiu Li Meng ◽  
Xiao Dong Yu

This article, to optimize the transmission mechanism of tightening machine, select the involute planetary gear with two teeth differences a research object, determine the design variables about modification coefficient, modulus and tooth thickness, based on the target of having the minimum volume, a mathematical model of optimization was established, the optimal solution of the objective function is obtained by using the SQP method on fmincon function of optimization toolbox of Matlab. The results showed, the volume of pinion decreased 15% after optimizated, the volume of the corresponding gear will also greatly reduced, achieved the optimization goal.


10.29007/2k64 ◽  
2018 ◽  
Author(s):  
Pat Prodanovic ◽  
Cedric Goeury ◽  
Fabrice Zaoui ◽  
Riadh Ata ◽  
Jacques Fontaine ◽  
...  

This paper presents a practical methodology developed for shape optimization studies of hydraulic structures using environmental numerical modelling codes. The methodology starts by defining the optimization problem and identifying relevant problem constraints. Design variables in shape optimization studies are configuration of structures (such as length or spacing of groins, orientation and layout of breakwaters, etc.) whose optimal orientation is not known a priori. The optimization problem is solved numerically by coupling an optimization algorithm to a numerical model. The coupled system is able to define, test and evaluate a multitude of new shapes, which are internally generated and then simulated using a numerical model. The developed methodology is tested using an example of an optimum design of a fish passage, where the design variables are the length and the position of slots. In this paper an objective function is defined where a target is specified and the numerical optimizer is asked to retrieve the target solution. Such a definition of the objective function is used to validate the developed tool chain. This work uses the numerical model TELEMAC- 2Dfrom the TELEMAC-MASCARET suite of numerical solvers for the solution of shallow water equations, coupled with various numerical optimization algorithms available in the literature.


2018 ◽  
Vol 12 (3) ◽  
pp. 181-187
Author(s):  
M. Erkan Kütük ◽  
L. Canan Dülger

An optimization study with kinetostatic analysis is performed on hybrid seven-bar press mechanism. This study is based on previous studies performed on planar hybrid seven-bar linkage. Dimensional synthesis is performed, and optimum link lengths for the mechanism are found. Optimization study is performed by using genetic algorithm (GA). Genetic Algorithm Toolbox is used with Optimization Toolbox in MATLAB®. The design variables and the constraints are used during design optimization. The objective function is determined and eight precision points are used. A seven-bar linkage system with two degrees of freedom is chosen as an example. Metal stamping operation with a dwell is taken as the case study. Having completed optimization, the kinetostatic analysis is performed. All forces on the links and the crank torques are calculated on the hybrid system with the optimized link lengths


Sign in / Sign up

Export Citation Format

Share Document