A New Approach to Solving Reliability Optimization Design of Gear Box

2011 ◽  
Vol 295-297 ◽  
pp. 1326-1329
Author(s):  
Wen Hui Mo

Reliability optimization design of the gear box is proposed. It includes an objective function, 30 design variables and 52 constraints. It is important to note that material properties, geometry parameters and applied loads of the structure are assumed to be normal random variables. Reliability calculation adopts the HL-RF method. The comparison of design parameters demonstrates the proposed method.

2011 ◽  
Vol 284-286 ◽  
pp. 2509-2512
Author(s):  
Wen Hui Mo

Geometry parameters, material properties and applied loads of the gear box are regarded as normal random variables. A model of reliability optimization design of the gear box is introduced. Two objective functions are selected. The Monte Carlo simulation of reliability calculation is presented. With rapid increasing of the speed of CPU, it is a feasible method. The optimization effect is very good.


2014 ◽  
Vol 721 ◽  
pp. 464-467
Author(s):  
Tao Fu ◽  
Qin Zhong Gong ◽  
Da Zhen Wang

In view of robustness of objective function and constraints in robust design, the method of maximum variation analysis is adopted to improve the robust design. In this method, firstly, we analyses the effect of uncertain factors in design variables and design parameters on the objective function and constraints, then calculate maximum variations of objective function and constraints. A two-level optimum mathematical model is constructed by adding the maximum variations to the original constraints. Different solving methods are used to solve the model to study the influence to robustness. As a demonstration, we apply our robust optimization method to an engineering example, the design of a machine tool spindle. The results show that, compared with other methods, this method of HPSO(hybrid particle swarm optimization) algorithm is superior on solving efficiency and solving results, and the constraint robustness and the objective robustness completely satisfy the requirement, revealing that excellent solving method can improve robustness.


2013 ◽  
Vol 273 ◽  
pp. 198-202
Author(s):  
Yu Xia Wang

In a given power P, number of teeth than u, input speed and other technical conditions and requirements, find out a set of used a economic and technical indexes reach the optimal design parameters, realize the optimization design of the reducer, This paper determined unipolar standard spur gear reducer design optimization of the design variables, and then determine the objective function, determining constraint function, so as to establish the mathematical model.


2009 ◽  
Vol 626-627 ◽  
pp. 693-698
Author(s):  
Yong Yong Zhu ◽  
S.Y. Gao

Dynamic balance of the spatial engine is researched. By considering the special wobble-plate engine as the model of spatial RRSSC linkages, design variables on the engine structure are confirmed based on the configuration characters and kinetic analysis of wobble-plate engine. In order to control the vibration of the engine frame and to decrease noise caused by the spatial engine, objective function is choosed as the dimensionless combinations of the various shaking forces and moments, the restriction condition of which presents limiting the percent of shaking moment. Then the optimization design is investigated by the mathematical model for dynamic balance. By use of the optimization design method to a type of wobble-plate engine, the optimization process as an example is demonstrated, it shows that the optimized design method benefits to control vibration and noise on the engines and improve the performance practically and theoretically.


2013 ◽  
Vol 765-767 ◽  
pp. 176-180
Author(s):  
Rong Chuang Zhang ◽  
Ao Xiang Liu ◽  
Jun Wang ◽  
Wan Shan Wang

In the optimization design of the gear hobbing machine bed, the finite element model is build and the static analysis and vibration modal analysis are performed. Then sensitivity analysis is used to gain the main design parameters which influence the bed property most. Furthermore, the multi-objective optimization design of the bed is performed in ANSYS Workbench with these design parameters as the design variables. At last, after all optimum proposals are showed up, Analytic Hierarchy Process is used to determine the weighting coefficient, and the most optimal solution is found out. As a result, the dynamic and static performances of the machine bed are improved under control of the machine bed mass.


2005 ◽  
Vol 109 (1100) ◽  
pp. 471-475 ◽  
Author(s):  
S. L. Lemanski ◽  
P. M. Weaver ◽  
G. F. J. Hill

Abstract This paper examines the design of a composite helicopter rotor blade to meet given cross-sectional properties. As with many real-world problems, the choice of objective and design variables can lead to a problem with a non-linear and/or non-convex objective function, which would require the use of stochastic optimisation methods to find an optimum. Since the objective function is evaluated from the results of a finite element analysis of the cross section, the computational expense of using stochastic methods would be prohibitive. It is shown that by choosing appropriate simplified design variables, the problem becomes convex with respect to those design variables. This allows deterministic optimisation methods to be used, which is considerably more computationally efficient than stochastic methods. It is also shown that the design variables can be chosen such that the response of each individual cross-sectional property can be closely modelled by a linear approximation, even though the response of a single objective function to many design parameters is non-linear. The design problem may therefore be reformulated into a number of simultaneous linear equations that are easily solved by matrix methods, thus allowing an optimum to be located with the minimum number of computationally expensive finite element analyses.


2011 ◽  
Vol 211-212 ◽  
pp. 619-623
Author(s):  
Xi Xin Rao ◽  
Kang He ◽  
He Sheng Liu

Camera Device is crucial components of Automobile punching parts on-line detector and Its dynamic characteristics has a critical influence on the accuracy of Automobile punching parts on-line detector. To reduce the relative acceleration of Camera Device to the measured part, biaxial body of Automobile Punching Parts On-line Detector was optimized. On the basis of analyzing mechanism, simplifying the prototype, determining the design variables and the objective function and the constraint condition, this paper puts forward the parameter optimization mathematic model with the minimum of the acceleration of Camera Device relative to the point on the measured work piece as objective function and completes mechanism simulation and optimization by the ADAMS software. The results show that some design parameters gets more reasonable and dynamic performance of Automobile punching parts on-line detector is better.


Author(s):  
Matteo Cerutti ◽  
Michele Roma ◽  
Alessio Picchi ◽  
Riccardo Becchi ◽  
Bruno Facchini

Abstract The development and the optimization of a novel dry low NOx burner may require several steps of improvement. The first step of the overall development process has been documented by authors in a previous paper and included an exhaustive experimental characterization of a set of novel geometries. The in-depth results analysis allowed to correlate the investigated design parameters to burner performances, discovering possible two-fold optimization paths. Recurrent verifications of the assumptions made to define prototypes design are considered a mandatory step to avoid significant deviation from the correct optimization path, which strongly depends on both objective function definition and selection of design variables. Concerning the objective function, a proper mathematical formulation was proposed in the previous work, which represented a balance between two apparently conflicting aspect like flame stability and low emissions. Concerning design variables, outcomes of the first test campaign have been used in the present work to define new burner geometries. Starting from a new baseline who has showed the widest low NOx operating window, additional geometrical features have been considered in this survey as potentially affecting flame stabilization. Thanks to the degree of freedom offered by DMLM technology, rapid prototyping of alternative geometries allowed to easily setup a new experimental plan for the second optimization step. Exploiting the same approach used in the first test campaign, new geometries have been tested in a single-cup test rig at gas turbine relevant operating conditions, showing Stable low-NOx operating windows have been evaluated throughout dedicated objective functions for all geometries and results showed lower NOx and CO emissions as a consequence of the newly introduced geometrical modifications. Moreover, the comparison with the estimates of the previous campaign proved the existence of the identified optimization path. Indeed, it furnished valid elements for further using of the proposed methodology for the improvement of emission and blow-out characteristics of novel burners and, more in general, for the development of a novel dry low NOx technology.


2010 ◽  
Vol 148-149 ◽  
pp. 1726-1729
Author(s):  
Qi Bing Wang ◽  
Zhi Ming Wang ◽  
An Hua Peng

The objective function is the same flow speed of each sub-filed of product section at exit of the extrusion die for the complexity of hollow polymer profile, and design variables are impact on the flow uniformity of the space above the compression, the example based on finite element numerical simulation and based on the CAD/CAE/ERP database system, the result showed the velocity is obviously improved after the optimization, well positioned to meet the requirements of customer.


Sign in / Sign up

Export Citation Format

Share Document