J0520103 Investigation of Flow in Ultra-Highly Loaded Linear Turbine Cascade : Effects of Tip Clearance

2015 ◽  
Vol 2015 (0) ◽  
pp. _J0520103--_J0520103-
Author(s):  
Kensuke TAKAKURA ◽  
Hoshio TSUJITA
Author(s):  
Yunfeng Fu ◽  
Fu Chen ◽  
Cong Chen ◽  
Yanping Song

A novel leakage flow control strategy with honeycomb seal applied on the tip of the rotor blades in a highly-loaded turbine cascade is proposed. The numerical method is used to study the tip leakage flow in a highly-loaded turbine cascades with flat tip and with honeycomb seal structure, the mechanism of honeycomb tip on inhibiting leakage flow is analyzed, the influence of various relative gap heights is also been investigated. The discussions of the action of the honeycomb-tip structure in reducing leakage flow and improving the turbine efficiency provide the according for control methods of tip leakage flow. Through the comparative study among three different tip structures of honeycomb tip, honeycomb casing and flat tip, the results show that both honeycomb tip and honeycomb casing inhibit the leakage flow effectively, but honeycomb tip has positive effect on reducing the flow loss in cascade. For the cascade with honeycomb tip, on one hand, the vortices rolled up in the regular hexagon honeycomb cavities dissipate the energy of the tip leakage flow, and the range of influence of the vortices is nearly one third of the tip clearance height. On the other hand, the radial jets caused by the honeycomb obstruct the tip leakage flow like a “pneumatic fence”, resulting in weaker leakage flow and less leakage flow rate. Besides, the honeycomb tip reduces the scale of the leakage vortex, thus the leakage loss also decreases. Compared with the flat tip cascade at the clearance height of 1%H, the honeycomb tip cascade with the same clearance height obtains decrease of the leakage flow rate and leakage flow speed in circumference by 10.16% and 20%. As a result, the leakage vortex in honeycomb tip cascade is undermined, the loss is reduced by nearly 4.43%. Considering the abradable property of the honeycomb seal that can protect the blade tips from damage, the cascade with honeycomb tip structure can obtain a smaller clearance height and achieve better sealing effect. Compared to cascade with the flat tip at the clearance height of 2%H, the amount of leakage flow using inlet flow in the honeycomb tip cascades decreases by 17.33%, 36.63% and 54.79% at the clearance heights of 2%H, 1.5%H and 1%H, the losses related to the leakage flow is reduced by nearly 5.71%, 14.33% and 25.24%, respectively.


2006 ◽  
Vol 2006.41 (0) ◽  
pp. 19-20
Author(s):  
Satoshi YAMADA ◽  
Ryoichi ETOH ◽  
Yuichiro ASAGA ◽  
Hoshio TSUJITA ◽  
Shimpei MIZUKI ◽  
...  

1994 ◽  
Author(s):  
Shimpei Mizuki ◽  
Hoshio Tsujita

Three-dimensional incompressible turbulent flow within a linear turbine cascade with tip clearance is analyzed numerically. The governing equations involving the standard k-ε model are solved in the physical component tensor form with a boundary-fitted coordinate system. In the analysis, the blade tip geometry is treated accurately in order to predict the flow through the tip clearance in detail when the blades have large thicknesses. Although the number of grids employed in the present study is not enough because of the limitation of computer storage memory, the computed results show good agreements with the experimental results. Moreover, the results clearly exhibit the locus of minimum pressure on the rear part of the pressure surface at the blade tip.


2008 ◽  
Vol 24 (1) ◽  
pp. 26-33 ◽  
Author(s):  
Xiuquan Huang ◽  
Li He ◽  
David L. Bell

1989 ◽  
Vol 111 (3) ◽  
pp. 257-263 ◽  
Author(s):  
J. P. Bindon

The detailed development of tip clearance loss from the leading to trailing edge of a linear turbine cascade was measured and the contributions made by mixing, internal gap shear flow, and endwall/ secondary flow were identified, separated, and quantified for the first time. Only 13 percent of the overall loss arises from endwall/secondary flow and of the remaining 87 percent, 48 percent is due to mixing and 39 percent is due to internal gap shear. All loss formation appears to be dominated by phenomena connected with the gap separation bubble. Flow established within the bubble by the pressure gradient separates as the gradient disappears and most of the internal loss is created by the entrainment of this separated fluid. When this high-loss leakage wake enters the mainstream, it separates due to the suction corner pressure gradient to create virtually all the measured mixing loss. It is suggested that the control of tip clearance loss by discharge coefficient reduction actually introduces loss. Performance improvements may result from streamlined tip geometries that optimize the tradeoff between entropy production and flow deflection.


Author(s):  
Shaowen Chen ◽  
Qinghe Meng ◽  
Weihang Li ◽  
Zhihua Zhou ◽  
Songtao Wang

The effects of axially non-uniform clearances on the tip leakage flow and aerodynamic performance in a linear turbine cascade with a cavity squealer tip were investigated in this study with the objective of improving the flow loss and tip flow field structure. A calibrated five-hole probe was used for the measurement of three-dimensional flows downstream of the cascade. The method of oil-flow visualization was used to show the endwall flow field structure. The distribution of endwall static pressure was measured particularly by using the special moveable endwall. The axially non-uniform clearance, as a novel strategy that has a non-negligible influence on tip clearance flow and clearance leakage loss, may become a potential technology for improving aerodynamic performance in turbine cascades. By using the expanding clearance, the flow loss at the outlet is reduced effectively and an apparent improvement of aerodynamic performance in the turbine cascade is gained. Under the tip clearances of 0.75% H and 2% H, the maximum reduction of overall total pressure loss coefficient at the outlet is separately about 2.3% and 3.5% compared with the uniform clearance. The shrinkage of the buffer zone is considered to be able to weaken the interaction of the tip leakage vortex and passage vortex and thus reduce the loss of passage vortex. For the shrinking clearance, a noticeable decline in the aerodynamic performance of turbine cascade with cavity squealer tip is exhibited at both on and off design conditions in contrast to the uniform clearance. In addition, the effects of axially non-uniform clearances on the aerodynamic performance at off-design conditions have been investigated.


Sign in / Sign up

Export Citation Format

Share Document