scholarly journals Numerical Calculation of Flow for Cascade With Tip Clearance

1994 ◽  
Author(s):  
Shimpei Mizuki ◽  
Hoshio Tsujita

Three-dimensional incompressible turbulent flow within a linear turbine cascade with tip clearance is analyzed numerically. The governing equations involving the standard k-ε model are solved in the physical component tensor form with a boundary-fitted coordinate system. In the analysis, the blade tip geometry is treated accurately in order to predict the flow through the tip clearance in detail when the blades have large thicknesses. Although the number of grids employed in the present study is not enough because of the limitation of computer storage memory, the computed results show good agreements with the experimental results. Moreover, the results clearly exhibit the locus of minimum pressure on the rear part of the pressure surface at the blade tip.

1994 ◽  
Author(s):  
M. Govardhan ◽  
N. Venkatrayulu ◽  
V. S. Vishnubhotla

A detailed study of flow through the blade passage and downstream of a linear turbine cascade was carried out for four cases of tip clearance including zero clearance. Apart from inlet traverse, a total of eight stations were chosen for inter-blade flow traversing between 5% and 95% of axial chord from leading edge. Downstream flow surveys were made at distances of 106% of axial chord from the blade leading edge. Pitchwise and spanwise traverses were conducted for each tip clearance at these stations using a small five hole probe. Provision was also made for the measurement of static pressure distribution on the suction and pressure surfaces and also on the blade tip surface when clearance is present. At about 40% of axial chord from the leading edge, the presence of clearance vortex is identified inside the passage. The growth of the clearance vortex in size, its movement towards the suction surface and its increase in strength with the gap size were observed beyond 55% of axial chord till the trailing edge region. The rate of growth of the losses in the endwall region increased with clearance. Horse shoe vortex was not observed for the highest clearance. The overall losses increase rapidly with clearance in the rear half of the blade.


1989 ◽  
Vol 111 (3) ◽  
pp. 264-275 ◽  
Author(s):  
A. Yamamoto

This paper discusses the mechanisms of three-dimensional flows and of the associated losses occurring near the tip endwall region of a linear turbine cascade with tip clearance. The clearance gap sizes and the cascade incidences were chosen as the most important variables affecting the mechanisms. Flows close to the endwall and inside the clearance were surveyed in great detail using a micro five-hole pitot tube of 0.6 mm head size. The results gave very detailed information on the mechanisms, such as leakage flow vectors and pressure distributions throughout the clearance. Interaction of leakage flow with the endwall flow and their associated separation lines, effects of gap size and inlet flow angle on loss generation, and skewness of the three-dimensional endwall flows are also discussed.


Author(s):  
G. Morphis ◽  
J. P. Bindon

Flow visualisation and microscopic static pressure measurements were done in the tip clearance region of an annular turbine cascade with a rotating outer casing to simulate the relative motion at the tip of an axial rotor. The effect of relative motion did not have a significant effect on the blade gap pressure distributions. As in previous studies the narrow deep pressure depression on a sharp pressure edge was seen. It was confirmed that the width of the gap separation bubble depends on clearance and a correlation with flow visualisation showed that at the reattachment line there is the expected slight pressure peak. The separation bubble, which is thought to contribute a major part of the leakage loss, was shown to disappear when the pressure surface tip is give a radius of 2.5 gap widths.


1995 ◽  
Vol 117 (3) ◽  
pp. 487-490 ◽  
Author(s):  
S. A. Khalid

The relationship between turbomachinery blade circulation and tip clearance vortex circulation measured experimentally is examined using three-dimensional viscous flow computations. It is shown that the clearance vortex circulation one would measure is dependent on the placement of the fluid contour around which the circulation measurement is taken. Radial transport of vorticity results in the magnitude of the measured clearance vortex circulation generally being less than the blade circulation. For compressors, radial transport of vorticity shed from the blade tip in proximity to the endwall is the principal contributor to the discrepancy between the measured vortex circulation and blade circulation. Further, diffusion of vorticity shed at the blade tip toward the endwall makes it impossible in most practical cases to construct a fluid contour around the vortex that encloses all, and only, the vorticity shed from the blade tip. One should thus not expect agreement between measured tip clearance vortex circulation and circulation around the blade.


Author(s):  
J. Luo ◽  
B. Lakshminarayana

The 3-D viscous flowfield in the rotor passage of a single-stage turbine, including the tip-leakage flow, is computed using a Navier-Stokes procedure. A grid-generation code has been developed to obtain embedded H grids inside the rotor tip gap. The blade tip geometry is accurately modeled without any “pinching”. Chien’s low-Reynolds-number k-ε model is employed for turbulence closure. Both the mean-flow and turbulence transport equations are integrated in time using a four-stage Runge-Kutta scheme. The computational results for the entire turbine rotor flow, particularly the tip-leakage flow and the secondary flows, are interpreted and compared with available data. The predictions for major features of the flowfield are found to be in good agreement with the data. Complicated interactions between the tip-clearance flows and the secondary flows are examined in detail. The effects of endwall rotation on the development and interaction of secondary and tip-leakage vortices are also analyzed.


2005 ◽  
Vol 128 (1) ◽  
pp. 166-177 ◽  
Author(s):  
Takayuki Matsunuma

Tip clearance losses represent a major efficiency penalty of turbine blades. This paper describes the effect of tip clearance on the aerodynamic characteristics of an unshrouded axial-flow turbine cascade under very low Reynolds number conditions. The Reynolds number based on the true chord length and exit velocity of the turbine cascade was varied from 4.4×104 to 26.6×104 by changing the velocity of fluid flow. The freestream turbulence intensity was varied between 0.5% and 4.1% by modifying turbulence generation sheet settings. Three-dimensional flow fields at the exit of the turbine cascade were measured both with and without tip clearance using a five-hole pressure probe. Tip leakage flow generated a large high total pressure loss region. Variations in the Reynolds number and freestream turbulence intensity changed the distributions of three-dimensional flow, but had no effect on the mass-averaged tip clearance loss of the turbine cascade.


2009 ◽  
Vol 2009 ◽  
pp. 1-12 ◽  
Author(s):  
Maosheng Niu ◽  
Shusheng Zang

A numerical investigation has been performed to study the influences of cooling injection from the blade tip surface on controlling tip clearance flow in an unshrouded, high-turning axial turbine cascade. Emphasis is put on the analysis of the effectiveness of tip injection when the approaching flow is at design and off-design incidences. A total of three incidence angles are investigated, 7.4°, 0°, 0°, 0°, and 7.6°, 0° relative to the design value. The results indicate that even at the off-design incidences, tip injection can also act as an obstruction to the tip clearance flow and weaken the interaction between the passage flow and the tip clearance flow. It is also found that tip injection causes the tip clearance loss to be less sensitive to the incidences. Moreover, with injection, at all these incidences the heat transfer conditions are improved significantly on the blade tip surface in the middle and aft parts of blade. Thus, tip injection is proved to be an effective method of controlling tip clearance flow, even at off-design conditions. Beside that, an indirect empirical correlation is observed to be able to perform well in predicting the losses induced by tip clearance flow at design and off-design conditions, no matter whether air injection is active or not.


Author(s):  
A. Marn ◽  
E. Go¨ttlich ◽  
F. Malzacher ◽  
H. P. Pirker

The demand of further increased bypass ratio of aero engines will lead to low pressure turbines with larger diameters, which rotate at lower speed. Therefore, it is necessary to guide the flow leaving the high pressure turbine to the low pressure turbine at a larger diameter without any loss generating separation or flow disturbances. Due to costs and weight this intermediate turbine duct (ITD) has to be as short as possible. This leads to an aggressive (high diffusion) and further to a super-aggressive s-shaped duct geometry. In order to investigate the influence of the blade tip gap size on such a high diffusion duct flow a detailed test arrangement under engine representative conditions is necessary. Therefore, the continuously operating Transonic Test Turbine Facility (TTTF) at Graz University of Technology has been adapted: An super-aggressive intermediate duct is arranged downstream of a transonic HP-turbine stage providing an exit Mach number of about 0.6 and a swirl angle of −15 degrees. A second LP-vane row is located at the end of the duct and represents the counter rotating low pressure turbine at a larger diameter. A following deswirler and a diffuser are the connection to the exhaust casing of the facility. In order to determine the influence of the blade tip gap size on the flow through such a super-aggressive s-shaped turbine duct measurements were conducted with two different tip gap sizes, 1.5% span (0.8 mm) and 2.4% span (1.3 mm). The aerodynamic design of the HP-turbine stage, ITD, LP-vane and the de-swirler was done by MTU Aero engines. In 2007 at ASME Turbo Expo the influence of the rotor clearance size onto the flow through an aggressive ITD was presented. For the present investigation this aggressive duct has been further shortened by 20% (super-aggressive ITD) that the flow at the outer duct wall is fully separated. This paper shows the influence of the rotor tip clearance size onto this separation. The flow through this intermediate turbine duct was investigated by means of five-hole-probes, static pressure taps, boundary layer rakes and oil flow visualisation. The oil flow visualisation showed the existence of vortical structures within the separation where they seem to be imposed by the upstream HP-vanes. This work is part of the EU-project AIDA (Aggressive Intermediate Duct Aerodynamics, Contract: AST3-CT-2003-502836).


Author(s):  
Nirm V. Nirmalan ◽  
Jeremy C. Bailey ◽  
Mark E. Braaten

An experimental and computational investigation was conducted to study the detailed distribution of heat transfer effectiveness and pressure on an attached tip-shroud of a turbine blade. Temperatures and pressures were measured on the airfoil-side and gap-side surfaces of the shrouded tip in a three-airfoil stationary cascade. The instrumented center airfoil and the two slave airfoils modeled the aerodynamic tip section of a blade and have the capability to vary tip clearance. The experiments were run at gaps varying of 0.25% to 1.67% of blade span and at an airfoil exit Reynolds number of 1.26×106 and Mach number of 0.95. The effect of coolant flow through the radial-cooled airfoil was also studied. The experimental results are compared with a computational model using the commercially available code, CFX. This unique study presents the influence of gap and coolant flow on the pressure distribution and heat transfer effectiveness of an attached tip-shroud surface.


Author(s):  
Takayuki Matsunuma

Tip clearance losses represent a major efficiency penalty of turbine blades. This paper describes the effect of tip clearance on the aerodynamic characteristics of an unshrouded axial-flow turbine cascade under very low Reynolds number conditions. The Reynolds number based on the true chord length and exit velocity of the turbine cascade was varied from 4.4 × 104 to 26.6 × 104 by changing the velocity of fluid flow. The free-stream turbulence intensity was varied between 0.5% and 4.1% by modifying turbulence generation sheet settings. Three-dimensional flow fields at the exit of the turbine cascade were measured both with and without tip clearance using a five-hole pressure probe. Tip leakage flow generated a large high total pressure loss region. Variations in the Reynolds number and free-stream turbulence intensity changed the distributions of three-dimensional flow, but had no effect on the mass-averaged tip clearance loss of the turbine cascade.


Sign in / Sign up

Export Citation Format

Share Document