Impact Load Measurement by the Short Circuit Brake of the Wind-lens Turbine Blades

2016 ◽  
Vol 2016 (0) ◽  
pp. J0310402
Author(s):  
Ryuta TSURUNAGA ◽  
Satoru ODAHARA ◽  
Wen-Xue WANG ◽  
Takashi KARASUDANI
Author(s):  
Dezhi Xiong ◽  
He Wen ◽  
Shidong Chen ◽  
Xiaoping Zheng ◽  
Maotao Yang ◽  
...  

2020 ◽  
Vol 328 ◽  
pp. 01004
Author(s):  
Jan Hujer ◽  
Menghuot Phan ◽  
Tomáš Kořínek ◽  
Petra Dančová ◽  
Miloš Müller

Piezoelectric PVDF sensors offer a unique option for the measurement of cavitation aggressiveness represented by the magnitude of impacts due to cavitation bubble collapses near walls. The aggressiveness measurement requires specific sensors shape and area, whereas commercial PVDF sensors are fabricated in limited geometry and size ranges. The photolithography method offers a possibility of production of home-made PVDF sensors of arbitrary shape and size. This paper deals with the calibration of a photolithographically home-made PVDF sensor for the cavitation impact load measurement. The calibration of sensors was carried out by the ball drop method. Sensors of different sizes were fabricated by the photolithography method from multi-purpose both side metallized PVDF sheet. The standard technology used for the fabrication of printed circuit boards was utilized. Commercial PVDF sensors of the same size were calibrated and the calibration results were compared with the home-made sensors. The effect of size and the effect of one added protective layer of Kapton tape on a sensor sensitivity were investigated.


Author(s):  
xing huang ◽  
Qiyue Li ◽  
Xiaomu Liao ◽  
Xiang Zhang ◽  
Haideng Zeng ◽  
...  

A study has been made of the deformation of solids at high rates of strain which are produced by the impact of a small cylinder or jet of liquid on the surface of the solid. A method is developed for projecting this jet against the solid at velocities up to 1200 m/s. The subsequent deformation of the solid under impact and the behaviour of the liquid is observed by high-speed photographic methods. The magnitude and duration of the impact load are also measured by using a piezo-electric transducer. The mode of deformation of the solid has been investigated for plastic, elastic and brittle materials. There is evidence that the liquid jet, on impact, behaves initially in a compressible manner. Part of the deformation is due to these compressible effects and part to the shearing action of the liquid flowing at very high speeds across the surface. If the head of the jet has an appropriate shape (e.g. wedge shaped) the velocity of flow across the surface may be much greater than the velocity of approach. It is found that there are five general types of deformation produced in the solid. There are (i) circumferential surface fractures, (ii) subsurface flow and fractures, (iii) large-scale plastic deformation, (iv) shear deformation around the periphery of the impact zone, and (v) fracture due to the reflexion and interference of stress waves. The predominating mode of deformation depends primarily on the mechanical properties of the solid and on the velocity of impact. The observations have a bearing on the practical problem of the erosion of aircraft flying at high speed through rain and on the erosion of turbine blades.


Measurement ◽  
2021 ◽  
pp. 110592
Author(s):  
Xing Huang ◽  
Qiyue Li ◽  
Xiang Zhang ◽  
Xiaomu Liao ◽  
Xin'ao Wei ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1761
Author(s):  
Jan Hujer ◽  
Petra Dančová ◽  
Tomáš Kořínek ◽  
Miloš Müller

Piezoelectric PVDF sensors offer a unique option for the measurement of cavitation aggressiveness represented by the magnitude of impacts due to cavitation bubble collapses near walls. The aggressiveness measurement requires specific sensor shape and area, whereas commercial PVDF sensors are fabricated in limited geometry and size ranges. The photolithography method offers a possibility of production of home-made PVDF sensors of arbitrary shape and size. The methodology of a unique application of the standard photolithography method, which is commonly used for the production of printed circuit boards, is described in this paper. It enables mass production of high quality sensors contrary to laboratory techniques. This paper deals with the fabrication and the calibration of a photolithographically home-made PVDF sensor for the cavitation impact load measurement. The calibration of sensors was carried out by the ball drop method. Sensors of different sizes were fabricated by the photolithography method from a multi-purpose, both side metallized PVDF sheet. Commercial PVDF sensors of the same size were calibrated, and the calibration results were compared with the home-made sensors. The effect of size and the effect of one added protective layer of Kapton tape on a sensor sensitivity were investigated. The theoretical and numerical analysis was conducted to explain some issues during the ball impact.


Author(s):  
E. F. Koch ◽  
E. L. Hall ◽  
S. W. Yang

The plane-front solidified eutectic alloys consisting of aligned tantalum monocarbide fibers in a nickel alloy matrix are currently under consideration for future aircraft and gas turbine blades. The MC fibers provide exceptional strength at high temperatures. In these alloys, the Ni matrix is strengthened by the precipitation of the coherent γ' phase (ordered L12 structure, nominally Ni3Al). The mechanical strength of these materials can be sensitively affected by overall alloy composition, and these strength variations can be due to several factors, including changes in solid solution strength of the γ matrix, changes in they γ' size or morphology, changes in the γ-γ' lattice mismatch or interfacial energy, or changes in the MC morphology, volume fraction, thermal stability, and stoichiometry. In order to differentiate between these various mechanisms, it is necessary to determine the partitioning of elemental additions between the γ,γ', and MC phases. This paper describes the results of such a study using energy dispersive X-ray spectroscopy in the analytical electron microscope.


Author(s):  
L. P. Lemaire ◽  
D. E. Fornwalt ◽  
F. S. Pettit ◽  
B. H. Kear

Oxidation resistant alloys depend on the formation of a continuous layer of protective oxide scale during the oxidation process. The initial stages of oxidation of multi-component alloys can be quite complex, since numerous metal oxides can be formed. For oxidation resistance, the composition is adjusted so that selective oxidation occurs of that element whose oxide affords the most protection. Ideally, the protective oxide scale should be i) structurally perfect, so as to avoid short-circuit diffusion paths, and ii) strongly adherent to the alloy substrate, which minimizes spalling in response to thermal cycling. Small concentrations (∼ 0.1%) of certain reactive elements, such as yttrium, markedly improve the adherence of oxide scales in many alloy systems.


Sign in / Sign up

Export Citation Format

Share Document