Influence of temperature change on haptic feedback in a sensory feedback device for myoelectric prosthetic hand users

2019 ◽  
Vol 2019 (0) ◽  
pp. J02401
Author(s):  
Chiharu ISHII ◽  
Makuru ISOBE
2020 ◽  
Vol 32 (1) ◽  
pp. 199-208
Author(s):  
Makuru Isobe ◽  
Chiharu Ishii ◽  
◽  

In this study, a feedback device of force and temperature sensations for myoelectric prosthetic hand users was developed. When a prosthetic hand user grasps an object using the myoelectric prosthetic hand, the stiffness and temperature of the object are measured using sensors attached to the prosthetic hand, and force and temperature sensations are fed back to the upper arm of the user. From the experimental evaluation of the feedback device, the influence of temperature change on force sensations was confirmed. Therefore, to feed back the same force sensation to the user even if a temperature change has occurred, compensation functions were derived using the maximum likelihood method. On the basis of paired comparison, verification experiments were conducted, which demonstrated the effectiveness of the derived compensation functions.


Author(s):  
Zengle Li ◽  
Bin Zhi ◽  
Enlong Liu

In response to the major challenges faced by China’s transition to green low-carbon energy under the dual-carbon goal, the use of energy Internet cross-boundary thinking will help to develop research on the integration of renewable clean energy and buildings. Energy piles are a new building-energy-saving technology that uses geothermal energy in the shallow soil of the Earth’s surface as a source of cold (heat) to achieve heating in winter and cooling in summer. It is a complex thermomechanical working process that changes the temperature of the rock and soil around the pile, and the temperature change significantly influences the mechanical properties of natural loess. Although the soil temperature can be easily and quickly obtained by using sensors connected to the Internet of Things, the mechanical properties of natural loess will change greatly under the influence of temperature. To explore the influence of temperature on the stress–strain relationship of structural loess, the undrained triaxial consolidation tests were carried out under different temperatures (5, 20, 50 and 70∘C) and different confining pressures (50, 100, 200 and 400[Formula: see text]kPa), and a binary-medium model was introduced to simulate the stress–strain relationship. By introducing the damage rate under temperature change conditions, a binary-medium model of structural loess under variable temperature conditions was established, and the calculation method of the model parameters was proposed. Finally, the calculated results were compared with the test results. The calculation results showed that the established model has good applicability.


1996 ◽  
Vol 116 (11) ◽  
pp. 1246-1251 ◽  
Author(s):  
Ryuhei Okuno ◽  
Masaki Yoshida ◽  
Takanori Uchiyama ◽  
Kenzo Akazawa

Sensor Review ◽  
2016 ◽  
Vol 36 (2) ◽  
pp. 158-168 ◽  
Author(s):  
Drew van der Riet ◽  
Riaan Stopforth ◽  
Glen Bright ◽  
Olaf Diegel

Purpose This paper aims to explore the electronic design of the Touch Hand: a low-cost electrically powered prosthetic hand. The hand is equipped with an array of sensors allowing for position control and haptic sensation. Pressure sensors are used on the fingertips to detect grip force. A temperature sensor placed in the fingertip is used to measure the contact temperature of objects. Investigations are made into the use of cantilever vibration sensors to detect surface texture and object slippage. The hand is capable of performing a lateral grip of 3.7 N, a power grip of 19.5 N and to passively hold a weight of up to 8 kg with a hook grip. The hand is also tested on an amputee and used to perform basic tasks. The amputee took 30 min to learn how to operate the hands basic gripping functions. Design/methodology/approach Problems of previous prosthetic hands were investigated, followed by ways to improve or have similar capabilities, yet keeping in mind to reduce the price. The hand was then designed, simulated, developed and then tested. The hand was then displayed to public and tested with an amputee. Findings The Touch Hand’s capabilities with the usage of the low-cost materials, components and sensory system was obtained in the tests that were conducted. The results are shown in this paper to identify the appropriateness of the sensors for a usage while the costs are reduced. Furthermore, models were developed from the results obtained to take into account factors such as the non-slip material. Research limitations/implications The research was restricted to a US$1,000 budget to allow the availability of a low-cost prosthetic hand. Practical implications The Touch Hand had to have the ability to supply the amputee with haptic feedback while allowing the basic grasping of objects. The commercial value is the availability of an affordable prosthetic hand that can be used by amputees in Africa and other Lower-Income countries, yet allowing a more advanced control system compared to the pure mechanical systems currently available. Social implications The Touch Hand has the ability to give amputees affected in war situations the ability to grasp objects in a more affordable manner compared to the current available options. Feedback from amputees about the current features of the Touch Hand was very positive and it proves to be a way to improve society in Lower-Income countries in the near future. A sponsorship program is being developed to assist amputees with the costs of the Touch Hand. Originality/value The contributions of this research is a low-cost prototype system than can be commercialized to allow amputees in the Lower-Income countries to have the ability of a prosthetic hand. A sensory system in the hand is also explained which other low-cost prosthetic hands do not have, which includes temperature, force and vibration. Models of the sensors used that are developed and calibrated to the design of the hand are also described.


2019 ◽  
Vol 16 (2) ◽  
pp. 026034 ◽  
Author(s):  
Francesco Clemente ◽  
Giacomo Valle ◽  
Marco Controzzi ◽  
Ivo Strauss ◽  
Francesco Iberite ◽  
...  

Author(s):  
Adam J. Faeth ◽  
Chris Harding

This research describes a theoretical framework for designing multimodal feedback for 3D buttons in a virtual environment. Virtual button implementations often suffer from inadequate feedback compared to their mechanical, real-world, counterparts. This lack of feedback can lead to accidental button actuations and reduce the user’s ability to discover how to interact with the virtual button. We propose a framework for more expressive virtual button feedback that communicates visual, audio, and haptic feedback to the user. We apply the theoretical framework by implementing a software library prototype to support multimodal feedback from virtual buttons in a 3D virtual reality workspace.


Sign in / Sign up

Export Citation Format

Share Document