Power Generation Using Piezo Element (2nd Report) : Energy Conversion Efficiency of Piezo Element

2000 ◽  
Vol 2000.2 (0) ◽  
pp. 139-140 ◽  
Author(s):  
Katsura ASHIDA ◽  
Masaaki ICHIKI ◽  
Makoto TANAKA ◽  
Tokio KITAHARA
2017 ◽  
Vol 46 (18) ◽  
pp. 5872-5879 ◽  
Author(s):  
Mandvi Saxena ◽  
Tanmoy Maiti

Increasing electrical conductivity in oxides, which are inherently insulators, can be a potential route in developing oxide-based thermoelectric power generators with higher energy conversion efficiency.


2021 ◽  
Vol 271 ◽  
pp. 01023
Author(s):  
Hu Chen ◽  
Zhifei Ji ◽  
Yusheng Hu ◽  
Min Lin

This paper proposed a pulley-buoy accelerated wave energy linear power generation system, and the feasibility and effectiveness of this system were verified through experimental research. Compared with the traditional wave energy power generation system with three-stage energy conversion links, the pulley-buoy accelerated wave energy linear power generation system omits the intermediate energy transfer and conversion link, and realizes the direct gain of electric energy from the buoy movement caused by wave, and by introducing the pulley combination, the movement speed of the buoy is enlarged, the power generation of the linear power generation system is increased, thereby the wave energy conversion efficiency of the system is improved. Under laboratory conditions, a small-size pulley-buoy accelerated wave energy linear power generation system prototype and a swing-plate wave-making system were built to explore the effects of different buoy sizes on the power generation performance of the system. The test results show that within the research scope of this paper, increasing the size of the buoy can effectively increase the wave energy conversion efficiency of the system and improve the power generation performance of the accelerated wave energy power generation system. The research results in this paper provide useful experience for the practical application and efficient operation of wave energy power generation systems.


2014 ◽  
Vol 931-932 ◽  
pp. 1078-1082 ◽  
Author(s):  
Warachit Phayom ◽  
Apichai Namahima

This study was for design an economy cooler for increasing energy conversion efficiency of solar panel. Acrylic plastic was used to be material of the cooler and water was a working fluid in the system. The cost to build the cooler model was around 400 Baht. The results found, using cooling system increased energy conversion efficiency and power generation, especially, water flow rate at 200 ccm. At 200 ccm of water flow rate, it increased 0.52% of energy conversion efficiency and 18.01% of power generation. Thus this flow rate was the best condition for increasing energy conversion efficiency. It might due to this flow rate was not slow and was not that fast to absorb heat from solar panel.


2021 ◽  
Author(s):  
Xianhao Zhao ◽  
Tianyu Tang ◽  
Quan Xie ◽  
like gao ◽  
Limin Lu ◽  
...  

The cesium lead halide perovskites are regarded as effective candidates for light-absorbing materials in solar cells, which have shown excellent performances in experiments such as promising energy conversion efficiency. In...


Author(s):  
Robson L. Silva ◽  
Bruno V. Sant′Ana ◽  
José R. Patelli ◽  
Marcelo M. Vieira

This paper aims to identify performance improvements in cooker-top gas burners for changes in its original geometry, with aspect ratios (ARs) ranging from 0.25 to 0.56 and from 0.28 to 0.64. It operates on liquefied petroleum gas (LPG) and five thermal power (TP) levels. Considering the large number of cooker-top burners currently being used, even slight improvements in thermal performance resulting from a better design and recommended operating condition will lead to a significant reduction of energy consumption and costs. Appropriate instrumentation was used to carry out the measurements and methodology applied was based on regulations from INMETRO (CONPET program for energy conversion efficiency in cook top and kilns), ABNT (Brazilian Technical Standards Normative) and ANP—National Agency of Petroleum, Natural Gas (NG) and Biofuels. The results allow subsidizing recommendations to minimum energy performance standards (MEPS) for residential use, providing also higher energy conversion efficiency and/or lower fuel consumption. Main conclusions are: (i) Smaller aspect ratios result in the same heating capacity and higher efficiency; (ii) higher aspect ratios (original burners) are fuel consuming and inefficient; (iii) operating conditions set on intermediate are lower fuel consumption without significant differences in temperature increases; (iv) Reynolds number lower than 500 provides higher efficiencies.


Sign in / Sign up

Export Citation Format

Share Document